Scientific Measurement

PHY-4103

Dr. Eram Rizvi & Dr. Alston Misquitta

Lecture 6 - The Gaussian Probability Distribution

Last lecture we looked at the Binomial probability distribution:

$$f(k;n,p) = \frac{n!}{(n-k)!k!} p^{k} (1-p)^{n-k}$$

$$= {}_{n}C_{k} p^{k} (1-p)^{n-k}$$

$$= {}_{n}C_{k} p^{k} q^{n-k} \quad \text{where } q = 1-p \quad q = P(\text{fail})$$

Prob. of k successes given n trials, and probability of success for single trial = p

Used to determine uncertainties in situations where each trial has a true/false or yes/no result, e.g. opinion polls & efficiency calcs.

3

4

Another common probability distribution: The Poisson Distribution

Relevant for counting experiments

Describes statistics of events occurring at a random but at a definite rate e.g.

number of radioactive decays in 1 min interval

number of births in UK per 24 hours

Experiment: count number of radioactive decays in 1 min interval: k

Assume 100% efficient detector - no error on k

Repeat experiment \rightarrow get different $k \Rightarrow$ statistical fluctuation!

 $n \sim 10^{20}$ n nuclei p prob of single decay in 1 min $p \sim 10^{-20}$ k decays measured in 1 min

Can use binomial distribution in simplified form \Rightarrow Poisson Distribution

As n $\rightarrow \infty$ and p $\rightarrow 0$ with np $\rightarrow \lambda$ (const) then binomial dist gives Poisson dist.

Probability of observing k counts if mean number of counts is λ

$$f(\lambda, k) = \frac{\lambda^k}{k!} e^{-\lambda}$$
 $\lambda = n \times p = \text{mean no. of counts}$ $k = \text{observed no. of counts}$

Dr Eram Rizvi

Scientific Measurement - Lecture 6

Important properties of the Poisson distribution:

$$\lambda = \overline{k}$$

$$\sigma = \sqrt{\lambda}$$

i.e. the true mean is given by the mean of k and also k gives the true variance σ^2

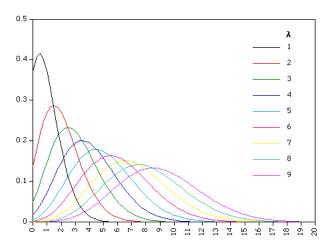
Poisson dist. skewed for small $\boldsymbol{\lambda}$ More symmetric as λ increases I measurement gives λ and σ

$$k \pm \sqrt{k}$$

fractional error: $\frac{\sigma}{\lambda} = \frac{\sqrt{k}}{k} = \frac{1}{\sqrt{k}}$

In other words:

measurement of k gives estimate of $\boldsymbol{\lambda}$ measurement of \sqrt{k} gives estimate of σ

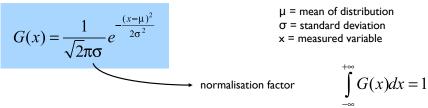


Thus error decreases as k increases but only as the square root!

Dr Eram Rizvi Scientific Measurement - Lecture 6

The most important probability distribution: Gaussian Other names: Bell curve, Normal Distribution

Binomial & Poisson dists. are discrete Gaussian is continuous probability distribution



Dr Eram Rizvi Scientific Measurement - Lecture 6

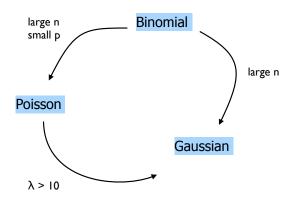
5

Gaussian distribution has nice properties:

mean = median = mode:
$$\mu = \int_{-\infty}^{+\infty} xG(x)dx = 1$$

$$\sigma^2 = \int_{-\infty}^{+\infty} (x - \mu)^2 G(x)dx$$

- \bullet Gaussian dist. is symmetric about mean μ
- \bullet μ shifts the peak of distribution



Dr Eram Rizvi Scientific Measurement - Lecture 6

7

Why is the Gaussian Distribution so important?

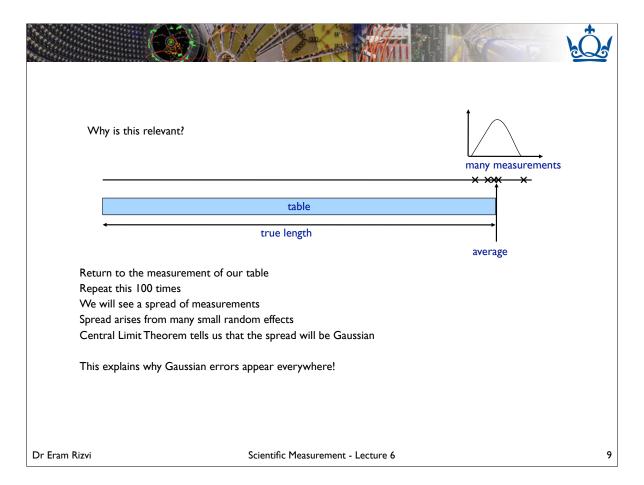
The Central Limit Theorem

The mean of a large number of independent samples each of size n from the same probability distribution (not necessarily Gaussian) has approximately a Gaussian distribution centred on the population mean and variance which reduces as 1/n

 $\underline{http://www.intuitor.com/statistics/CLAppClasses/CentLimApplet.htm}$

Dr Eram Rizvi

Scientific Measurement - Lecture 6



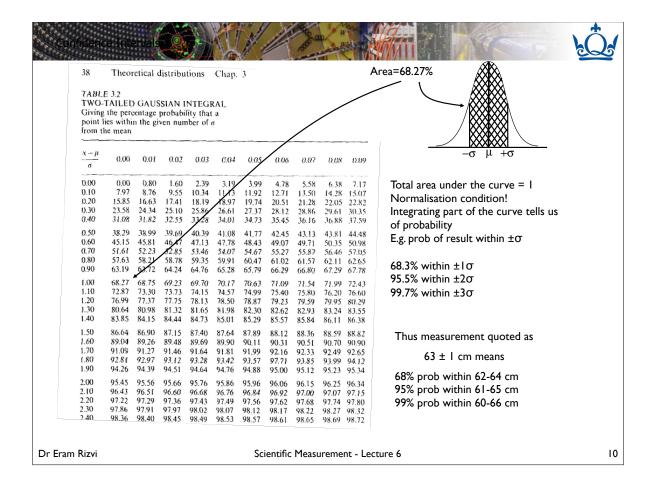
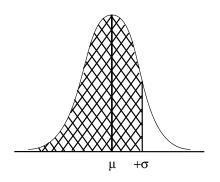


TABLE 3.3 ONE-TAILED GAUSSIAN INTEGRAL Giving the percentage probability that a point lies within the given number of σ to one side of the mean

$x - \mu$ σ	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.00	50.00	50.40	50.80	51.20	51.60	51.99	52.39	52.79	53.19	53.59
0.10	53.98	54.38	54.78	55.17	55.57	55.96	56.36	56.75	57.14	57.53
0.20	57.93	58.32	58.71	59.10	59.48	59.87	60.26	60.64	61.03	61.41
0.30	61.79	62.17	62.55	62.93	63.31	63.68	64.06	64.43	64.80	65.17
0.40	65.54	65.91	66.28	66.64	67.00	67.36	67.72	68.08	68.44	68.79
0.50	69.15	69.50	69.85	70.19	70.54	70.88	71.23	71.57	71.90	72.24
0.60	72.57	72.91	73.24	73.57	73.89	74.22	74.54	74.86	75.17	75.49
0.70	75.80	76.11	76.42	76.73	77.04	77.34	77.64	77.94	78.23	78.52
0.80	78.81	79.10	79.39	79.67	79.95	80.23	80.51	80.78	81.06	81.33
0.90	81.59	81.86	82.12	82.38	82.64	82.89	83.15	83.40	83.65	83.89
1.00	84.13	84.38	84.61	84.85	85.08	85.31	85.54	85.77	85.99	86.21
1.10	86.43	86.65	86.86	87.08	87.29	87.49	87.70	87.90	88.10	88.30
1.20	88.49	88.69	88.88	89.07	89.25	89.44	89.62	89.80	89.97	90.15
1.30	90.32	90.49	90.66	90.82	90.99	91.15	91.31	91.47	91.62	91.77
1.40	91.92	92.07	92.22	92.36	92.51	92.65	92.79	92.92	93.06	93.19
1.50	93.32	93.45	93.57	93.70	93.82	93.94	94.06	94.18	94.29	94.41
1.60	94.52	94.63	94.74	94.84	94.95	95.05	95.15	95.25	95.35	95.45
1.70	95.54	95.64	95.73	95.82	95.91	95.99	96.08	96.16	96.25	96.33
1.80	96.41	96.49	96.56	96.64	96.71	96.78	96.86	96.93	96.99	97.06
1.90	97.13	97.19	97.26	97.32	97.38	97.44	97.50	97.56	97.61	97.67
2.00	97.72	97.78	97.83	97.88	97.93	97.98	98.03	98.08	98.12	98.17
2.10	98.21	98.26	98.30	98.34	98.38	98.42	98.46	98.50	98.54	98.57
2.10	98.61	98.64	98.68	98.71	98.75	98.78	98.81	98.84	98.87	98.90
2.30	98.93	98.96	98.98	99.01	99.04	99.06	99.09	99.11	99.13	99.16
2.40	99.18	99.20	99.22	99.25	99.27	99.29	99.31	99.32	99.34	99.36

Can integrate up to some max value One tailed Gaussian integral = 0.5 + $\frac{1}{2}$ (area - σ to + σ) 84.1% < 1 σ 97.7% < 2 σ



Dr Eram Rizvi

Scientific Measurement - Lecture 6

П