

- We often want to know likelihood of an event occurring
- Quantify this with dimensionless parameter: Probability $(0 \rightarrow I)$
- Important concept in e.g. quantum physics
- Often use histograms to visualise this

Thus histogram becomes a probability density since $\sum_{i} \frac{N_{i} / N_{\text {tot }}}{\Delta x} \times \Delta x=\sum_{i} N_{i} / N_{\text {tot }}=1$

Thus a normalised histogram is a probability density!
Consider die throwing experiment. Throw die 6 times and histogram the results

Given enough data:
$\Delta x \rightarrow d x$
$N_{i} / \Delta x \rightarrow f(x)$

$$
\text { Bin content } \approx \frac{\frac{1}{2} N_{i} / N_{\text {tot }}}{\frac{1}{2} \Delta x} \text { i.e. it is unchanged! }
$$

Now let $\Delta x \rightarrow 0$
Histogram \rightarrow continuous distribution (for non-discrete observables)
compare dice throwing result to prob of bus arriving in time $\Delta \mathrm{t}$
Let's halve the bin width:

Normalisation condition is then $\int_{-\infty}^{+\infty} f(x) d x=1$

Prob of bus arriving in time dt $=1 n s$ is tiny, but summed over $10^{\prime \prime}$ 'bins' (~ 1 min) prob becomes sensible value

- Lets look at the discrete case of a dice throwing experiment
- Calculate probability of different outcomes
- Result is a discrete variable
- a die can only result in $1,2,3 . . .6$ i.e. not 2.45
- a coin toss only results in heads or tails (never h and t !)
- Consider 6 tosses of a coin (equivalent to single toss of 6 coins)
- How often does this result in 6 heads (6h)?
- $\mathrm{P}(6 \mathrm{~h})=(1 / 2)^{6}=1 / 64=1.6 \%$
- Repeat this experiment 100 times:
we expect 6 h to happen I or 2 times (maybe 0 or 3 times)
-What is prob of I head \& 5 tails i.e. $\mathrm{P}(\mathrm{Ih})$?
$(1 / 2)^{1} \times(1 / 2)^{5}$? NO! This is $P(h t t t t)$ what about $P(t h t t t t)$ etc?
$P(\mathrm{lh})=6(1 / 2)^{1} \times(1 / 2)^{5}$ allows h on any of the 6 tosses
$P(I h)=6 / 64=9.4 \%$ Quite likely to occur in 100 identical experiments

Number of ways of picking 4 heads from 6 tosses is:

$$
\begin{gathered}
{ }_{6} C_{4}=\frac{6!}{(6-4)!4!}=\frac{6 \times 5}{2}=15 \\
P(4 \mathrm{~h})={ }_{6} C_{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{2}=\frac{15}{64}=0.234 \quad(=23.4 \%)
\end{gathered}
$$

We took $P(h)=P(t)=1 / 2$
i.e. P (success) $=P($ fail $)$

What if P (success) $\neq P($ fail $)$?
Let $\mathrm{p}=\mathrm{P}$ (success)

Binomial Distribution

$$
\begin{aligned}
f(k ; n, p) & =\frac{n!}{(n-k)!k!} p^{k}(1-p)^{n-k} \\
& ={ }_{n} C_{k} p^{k}(1-p)^{n-k} \\
& ={ }_{n} C_{k} p^{k} q^{n-k} \quad \text { where } q=1-p \quad \mathrm{q}=\mathrm{P}(\text { fail })
\end{aligned}
$$

Prob. of k successes given n trials,
and probability of success for single trial $=p$

Binomial distribution for various n values with $p=0.4$
Note the distribution is discrete - lines between points are to guide the eye

- Binomial distribution describes statistics of situations with a true/false outcome only
- Distributions has some nice properties:

$$
\bar{k}=\text { mean number of successes }=\sum_{\mathrm{k}=0}^{\mathrm{n}} k \times f(k)=n p
$$

i.e. mean number of heads from 6 tosses $=3$

$$
\text { standard deviation: } \quad \begin{aligned}
\sigma_{k} & =\sqrt{n p(1-p)} \\
& =\sqrt{n p q}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - In general } p \neq 0.5 \text { e.g. Probability(England winning next match) } \\
& \text { - Binomial statistics used for true/false type experiments } \\
& \text { - Example: opinion polls } \\
& \text { Ask a sample of people a question. Allow only yes/no answers } \\
& \text { "Would you prefer to see the re-introduction of the death penalty to the UK?" } \\
& \text { Poll } 1000 \text { randomly selected people } \\
& \mathrm{n}=1000 \\
& \text { Yes }=500 \text { No (or "Don't know") }=500 \\
& \text { Thus } p=500 / 1000=50 \%(!) \\
& \text { What is the uncertainty? } \\
& \sigma=\sqrt{n p(1-p)} \\
& =\sqrt{1000 \times 0.5 \times 0.5} \\
& =\sqrt{250}=16 \\
& \text { Fractional error }=\frac{\sigma}{n p}=\frac{16}{500} \approx 3 \%
\end{aligned}
$$

-To reduce this error by factor of three to 1% need to work very hard

$$
\begin{aligned}
\frac{\sqrt{n \times 0.50 \times 0.50}}{n \times 0.50} & =1 \%=\frac{1}{\sqrt{n}} \\
\sqrt{n} & =\frac{1}{0.01} \\
n & =10000
\end{aligned}
$$

Need to increase n by factor of 10 for a factor $\sqrt{ } 10$ reduction in error!

