Scientific Measurement

PHY-103

Dr. Eram Rizvi & Dr. Alston Misquitta

Lecture I - Introduction

Module Overview

Scientific Measurement: Module Information

Module Organisers: Dr E. Rizvi (room 401 : office hour Tues 1400 - 1500)

Dr A. Misqiutta (room 507: office hour Wed 1000 - 1100)

All information is in booklet and online: http://www.ph.qmul.ac.uk/~phy103/scm.html

2 lectures per week (weeks I - 4 only)

Tuesday 12⁰⁰ - 13⁰⁰ Friday 09⁰⁰ - 10⁰⁰

I-2 lab sessions per week: either Mon+Tue **or** Thu+Fri Choose this yourself with lab technicians today

Weeks 2-4 I lab/week Complete 3 lab experiments Weeks 5-6 2 lab/week Complete 2 lab experiments

Week 7 no lectures/lab Write up experiment 4 as formal report

Weeks 8 no lectures Obtain formative assessment of report in your lab session

Weeks 9-11 2 lab/week Complete one longer experiment

Week 12 no lab/lectures Write-up long experiment

Exercises 2 Sets, weeks 4 and 6

Hand in by Thursday 1600 (19th Oct and 2nd Nov)

No exam: 100% coursework

0%

25%

15%

40%

10%

10%

Labs is located on 2nd floor of Physics building:

2-5pm

Choose Mon/Tue or Thu/Fri

Sign up in lab for your chosen day **today**

Choose lab partner or lab technician will assign for you

Read the script (in booklet) thoroughly before starting expt

Each expt has a worksheet

Hand-in deadline is I week after the experiment

Late submission will be penalised

It is required to submit expt I-3

Experiment I-3

Experiment 4

Experiment 5

Homework I

Homework 2

Experiment 6-12

Late work will not be marked! - solutions on web!

You will fail the course if you do not submit ALL coursework

Watch the SCM website for changes, info, homework solutions!

Mark penalties are as follows:

1	
Length of time after submission deadline	Mark penalty
<24 hours	-20%
1-3 days	-50%
>3 days	-100%

Dr Eram Rizvi

Scientific Measurement - Lecture I

PQ4

Module Overview

Week	Dates	A1	A2	В1	B2	Marks
		Monday	Tuesday	Thursday	Friday	
1	Sept 24 – Sept28	Lecti				
2	Oct 1 – Oct 5	Complete e				
3	Oct 8 – Oct 12	weeks 2-4				
4	Oct 15 – Oct 19					
		Monday and Tuesday Thursday and Friday				
5	Oct 22 – Oct 26	Ex Le	25% or 15%			
6	Oct 29 – Nov 2	Experiment 5 or experiment 4 Lectures Tuesday and Friday				15% or 25%
7	Nov 5 – Nov 9	Reading w				
8	Nov 12 – Nov 16	Formative Le				
9	Nov 19 – Nov 23	Choose one of experiments 6–12 Lectures Tuesday and Friday				40%
10	Nov 26 – Nov 30	Continue (one of three parts per week)				
11	Dec 3 – Dec 7	Continue (one of three parts per week)				
12	Dec 10 – Dec 14	Write u				
		2 Homewor	20%			

Lab Demonstrators are:

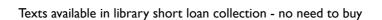
Dr Eram Rizvi

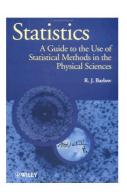
Dr Alston Misquitta

Ms Elisa Piccaro

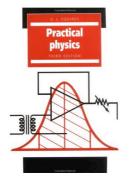
Pete Crew

Saqib Qureshi


Also 2 postgraduate student demonstrators in each lab session Scientific Measurement - Lecture I


4

5


Module Overview

Dr Eram Rizvi

Good statistics reference £26

Good guide to laboratory practice £26

Another good stats ref. £15

Guide to writing reports £17

Aim of this course:

teach experimental technique
knowledge of underlying physics will not be tested
experiments not of world quality
can get high precision none the less
how accurate? → purpose of these lectures!
how to obtain, manipulate, present and interpret experimental data
teach measurement uncertainties
Plagiarism will be treated very seriously

Dr Eram Rizvi

Scientific Measurement - Lecture I

•

Scientific Methodology - The Scientific Method

Whats the difference between these lists?

Luminferous aether Plum pudding atomic model Aristotelian Gravity Quantum mechanics Special relativity Newtonian gravity Thermodynamics

Scientific Methodology - The Scientific Method

Whats the difference between these lists?

Luminferous aether Plum pudding atomic model Aristotelian Gravity Quantum mechanics Special relativity Newtonian gravity Thermodynamics

Nice ideas, but flawed - proven wrong

Great pillars of modern physics!

Dr Eram Rizvi

Scientific Measurement - Lecture I

Scientific Methodology - The Scientific Method

Science is driven by experiment and data

- Only experiment can distinguish between rival theories
- Only experiment can determine fundamental constants of nature c,\hbar , G,k are all derived from experiment NOT theory

Experiment is the final arbiter of Truth

Thus experimenters have a HUGE responsibility
Honesty and Integrity are paramount
Open mindedness: do not presume to know the "answer"
Do not "fiddle" results to get 'correct' answer
Provided your method is ok - Experiment is correct (almost) BY DEFINITION!
If data & theory disagree, the theory is WRONG!
Experiment tells us what the TRUTH is - Theory tells us why

OK, measurement is important

Lets measure the same object many times: measure a chair several times & plot results

Why is there a spread of results?
ruler is flimsy?
some people can't read a ruler?
space-time is fluctuating changing the size of the chair?

Dr Eram Rizvi

Scientific Measurement - Lecture I

Measurement Uncertainty

Any measurement has an uncertainty or error due to:

- equipment
- definition of measurement
- sight of observer
- angle of viewing the ruler & object
- calibration of instrument

How we deal with this is the subject of these lectures!

Aside:

Physicists only measure 5 fundamental quantities

Length: Distance travelled by light in some time interval Time: Number of periods of specific wavelength radiation

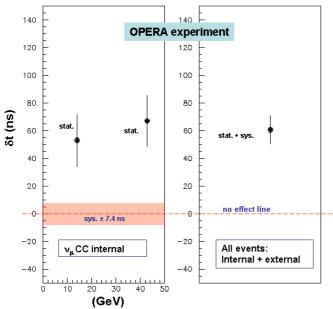
Current: Force between two conductors

Temp.: Triple point of water
Mass: Lump of metal in Paris!

Dr Eram Rizvi

Measurement of our chair should reflect the uncertainty!

write it as: 45 ± 2 cm


means TRUE value lies in range 43 - 47 cm

UNLIKELY to be >51 UNLIKELY to be <39

On a graph we show this as an error bar:

Any measurement is WORTHLESS unless you estimate it's uncertainty

This is the only way of comparing measurements and deciding on compatibility

Real measurement published 4 days ago... http://arxiv.org/abs/1109.4897v1

Dr Eram Rizvi

Scientific Measurement - Lecture I

Measurement Uncertaint

55+

Age

35 to

14%

Comres poll - today

10%

13

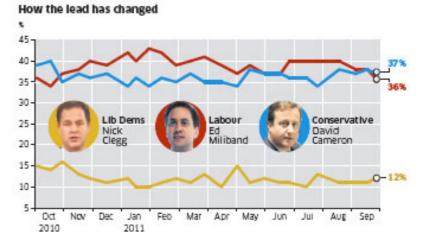
YouGov poll - June 2010

	wei	gnted Sample	2152	1035	1117	258	365	367	396	766
Unweighted Base		2152	986	1166	167	326	333	367	959	
On the whole, Islam is a violent religion Strongly agree Tend to agree		%	%	%	%	%	%	%	%	
		Strongly agree	9%	12%	6%	10%	8%	8%	8%	10%
		Tend to agree	21%	22%	19%	11%	17%	18%	20%	28%
	T	OTAL AGREE	30%	34%	25%	21%	25%	26%	27%	38%
	Neither agre	e nor disagree	22%	20%	24%	20%	18%	23%	26%	23%
Tend to disagree			25%	25%	25%	27%	26%	24%	27%	23%
	Strongly disagree		12%	13%	12%	21%	16%	14%	9%	9%
	TOTA	L DISAGREE	37%	38%	37%	48%	42%	38%	37%	32%

Gender

Female

Male


Don't know 11%

Polls use a sample of usually about 2000 people Results quoted for 40 million adults!

Do 30% of the UK agree with this?

Or could it be 27%? ... or 43%

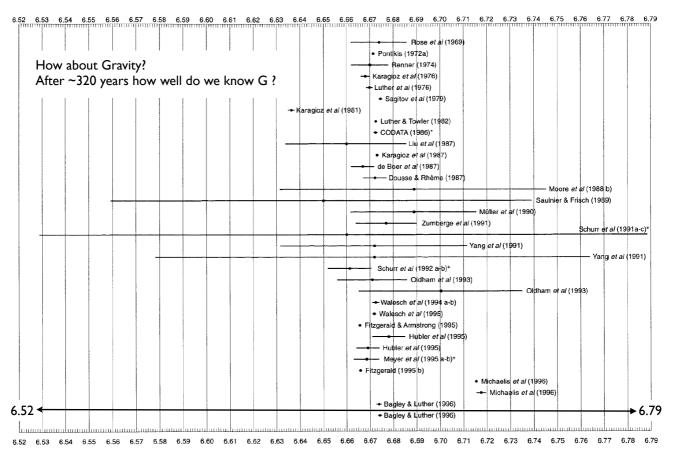
Typical uncertainty is usually ~ 2.5% poll is not as conclusive as news readers think!

Scientific Measurement - Lecture I

14

"How can a sample of only 1,000 or 2,000 possibly reflect the opinions of 42 million Britons within a 3% margin of error?"

George Gallup: Developed opinion polling in the 1930s:


If you have a large bowl of soup, you don't have to drink the whole bowl to decide if it has too much salt in it - just stir it well, and one spoonful will suffice.

Dr Eram Rizvi

Scientific Measurement - Lecture I

Background on the gravitational constant

15

See Cohen and Taylor (1987).

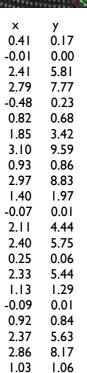
x10⁻¹¹ m³s⁻²kg⁻¹

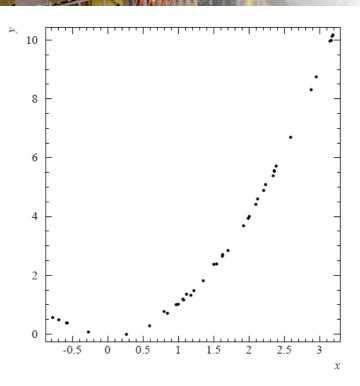
^{*} The error bars represent the quadrated sum of the individually listed Type A and Type B uncertainties

х 0.41 0.17 0.00 -0.01 2.41 5.81 2.79 7.77 -0.48 0.23 0.82 0.68 1.85 3.42 9.59 3.10 0.93 0.86 2.97 8.83 1.40 1.97 -0.07 0.01 2.11 4.44 2.40 5.75 0.25 0.06 5.44 2.33 1.13 1.29 -0.09 0.01 0.92 0.84 2.37 5.63 2.86 8.17 1.03 1.06 1.28 1.63 2.02 4.06 0.79 0.63 3.06 9.38 0.72 0.51

In an expt. x was varied and y was measured. Is there a relationship between them?

What is the relationship between the two data?


Dr Eram Rizvi


Scientific Measurement - Lecture I

17

Data Analysis

Humans are visual animals - brains recognise visual patterns very well Plotting graphs of data is a powerful technique in discovering patterns

Dr Eram Rizvi

1.28

2.02

0.79

3.06

0.72

1.63

4.06

0.63

9.38

0.51

What is the difference between these numbers?

```
3\times 10^2 314 314.159 265 314.159 26535 89793 23846 26433 83279 50288 41971 69399 37510 \pi\times 100
```

All are representations of the same number.

Number of sig.figs implies precision of that number.

Only in rare cases will you know a number to more than 3-4 sig figs!

Dr Eram Rizvi

Scientific Measurement - Lecture I

10

Presenting Data

What is the difference between these numbers?

```
3\times10^2 314 314.159 265 314.159 26535 89793 23846 26433 83279 50288 41971 69399 37510 \pi\times100
```

All are representations of the same number.

Number of sig.figs implies precision of that number.

Only in rare cases will you know a number to more than 3-4 sig figs!

Quantum electrodynamics: gyromagnetic ratio of the electron: g

```
Theory : \frac{1}{2}(g_{th} - 2) = 1159652140(28) \times 10^{-12}
Experiment : \frac{1}{2}(g_{exp} - 2) = 1159652186.9(4.1) \times 10^{-12}
```

I never want to see more than 3 sig figs unless you can justify it!!!

note: $1159652140(28) \times 10^{-12}$ is same as $(1159652140 \pm 28) \times 10^{-12}$

Only experiment can determine the truth
Measurement ALWAYS has uncertainty
Never quote a measurement without its uncertainty
Plotting data graphically is very useful
Never plot graphs without error bars
... ever!
Never quote more sig figs than necessary