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EMF 2005
REVISION LECTURES

These notes will be handed out at the revision lectures for EMF.
They summarise the principal topics and the most important
equations met during the course.  They should be regarded only as
an aid to revision and NOT as a complete condensation of the
course material.

GENERAL ADVICE

1. REMEMBER and UNDERSTAND the PHYSICAL MEANINGS
of the essential principles.  For all of the fundamental
relationships you should be able to STATE the law by writing
the EQUATION, to define all the symbols and to EXPLAIN what
the equation means using WORDS and DIAGRAM(S).

2. Learn the METHODS by which the fundamental principles are
applied to solve problems:

→→ Regard the problems done in the lectures, exercise classes
and assignments as EXAMPLES of how to apply the basic 

laws.  Try to see how the METHOD is always the same even 
for problems which look different in their details.

e.g., All the examples we did using Gauss’s Law are really
the same.

All the examples we did using Ampere’s Law are really the
same.

etc.

3. The examination will test your knowledge and understanding
of the basic ideas and also your ability to APPLY them to
problems similar to those met during the course.  The algebra
will not be very complicated.
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4. The last section of the course (electromagnetic waves) will not
come up in the examination, but it’s well worth going over it as
it is excellent revision of Ampere’s and Faraday’s Laws).

5. When answering exam questions, try to be clear about what
you are doing.  The ideal answer is a mixture of

EQUATIONS, WORDS and DIAGRAM(S).

6. Draw and clearly label DIAGRAM(S) when doing
questions:

(i) it helps you to visualise the problem and keeps you on the 
right track in finding the solution;

(ii) it proves to the marker that you know what you are doing.

7. When necessary, think in THREE DIMENSIONS, and be 
prepared to shift your spatial point of view if needed.

8. Remember the laws of VECTOR ALGEBRA, especially the 
DOT and CROSS products.

9. Distinguish between vector and scalar quantities 
(standard method = put a bar over a vector).

10. Don’t rely on these notes or any photocopied handouts
for final revision - if it’s not in your own handwriting you 

probably won’t be able to remember it.

IMPORTANT CHANGES TO THE 2005 EXAM STRUCTURE !

This year, in line with many other physics exams, there will be a
COMPULSORY section A in the paper,  comprised lof shorter
questions on a range of topics listed in the 'AIMS AND
OBJECTIVES' document which can be found on the course
Homepage.  Further section(s) in the paper will consist of longer
questions with a choice.
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VECTORS AND SCALARS Scalar:  Magnitude only    
Vector: Magnitude and direction

Examples of scalars Examples of vectors

Electric flux φφ Force F
Magnetic flux ΨΨ Velocity v
Electric potential V Electric field E
Capacitance C Magnetic field B
Inductance L Dipole moment P or µµ
Dot product A.B Cross product A B×

VECTOR NOTATION

Written notes : If it is a vector, put a bar over it
Printed material : Boldface letters are usually used for vectors

Note: In this handout, bars will be used to denote vectors as a 
reminder that this is what you must do in written work 
(e.g., the exam.)

Unit vector: Magnitude = 1 Symbolised by   ^

Orthogonal unit vectors
∧∧

i , 
∧∧

j , 
∧∧

k   point along the three axes.

VECTOR ADDITION (i)  Parallelogram law
(ii) Decompose vectors into their

x, y, z components
(iii) Do NOT add vectors as scalars

VECTOR MULTIPLICATION

(i) By a scalar: nA has magnitude = nA
direction = same as that of A

(ii) DOT Product: BA ⋅⋅  is a SCALAR

A

B

θθ
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BA ⋅⋅ = ABcosθθ

(iii) CROSS Product: A B×  is a VECTOR

Magnitude: |A B× | = ABsinθθ

Direction: Perpendicular to A  and B
given by the Right Hand Rule

LINE AND SURFACE ELEMENT VECTORS

(I) Any path can be divided into
many small LINE ELEMENTS

At any point, dL   has Magnitude = length dL
Direction tangential to the path

(ii) Any surface can be divided into
may small SURFACE ELEMENTS

For any small patch of area ds, the
NORMAL VECTOR is Ad

Ad has magnitude = area dA
direction perpendicular to ds pointing outwards

THE ELECTRIC FORCE
2

0

21

r4
QQF

πεπε
== r

∧∧

Coulomb’s Law

THE ELECTRIC FIELD
Q
F

E == Force per unit charge

2
0r4

Q  E
πεπε

== at distance r from a point charge Q

PRINCIPLE OF SUPERPOSITION Electric fields and forces 
add as vectors

Examples: - Two-dimensional examples involving point 
charges in the x-y plane

dL

dL

Ad

Q1

Q2

F

r
∧∧
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- Field on the axis of a line of charge
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ELECTRIC DIPOLE

Dipole moment vector: P  has Magnitude = QL
Direction from -Q to +Q

Torque on a dipole due to E  is  EP ××

ELECTRIC FLUX 

Flux through small flat area ds is   dφφ  =  AdE ⋅⋅

i.e.,  Flux  ≡≡  (Field)(Area)

GAUSS’S LAW

Using Coulomb’s Law and the concept
of electric flux, we derived Gauss’s Law

Know also how to - express it in words
- explain its physical meaning
- apply it to solve problems

Using Gauss’s Law:

When? When you are given some distribution of charge and 
you need to find the electric field.

How? 1. Draw a diagram showing the electric field pattern
2. Choose the best Gaussian surface to make the 

integral easy:

i.e., make E and dseither parallel or perpendicular

3. Work out  AdE  ⋅⋅==ΦΦ ∫∫
4. Decide how much charge, Qenc, is inside the 

Gaussian surface.

5. Set ΦΦ = Qenc/εε0 and rearrange to find E.

-Q+Q
L

P

-Q

+Q
E

0

encQ  AdE  
εε

==⋅⋅==ΦΦ ∫∫

Area dA

E

Ad
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Examples: Point charge, line of charge, plane of charge, 
sphere of charge, etc.

Gaussian surface is usually either a cylinder or a sphere.
Questions often have a number of parts (e.g., find E at different
radii): in these cases, the surface integral is usually of the same
form but the enclosed charge may be different for the different
regions.

Spherical symmetry  ⇒⇒  E  at any point is due only to the charge
inside its radius, and is the same as if all that charge were
concentrated at the centre [easily proved using Gauss’s Law].

CONDUCTORS IN ELECTRIC FIELDS

Electrostatic equilibrium  ⇒⇒  E  = 0 inside a perfect conductor

E is perpendicular to the 
surface of a perfect conductor

Gauss’s Law ⇒⇒ All excess charge lies at the 
surface of a perfect conductor

 ELECTRIC POTENTIAL, V

V at a point = PE which a charge Q would have at that point 
divided by Q.

i.e.,  V = U/Q  ≡≡  PE per unit charge SI units: Volts

Relationship between E and V:

Potential difference is the
line integral of the electric field

Electric field
≡≡ Potential gradient 

Zero of potential: Defined arbitrarily - often at infinity or at the 
surface of a conductor.

 V  k
z
V  j

y
V  i

x
V  E ∇∇−−==





∂∂
∂∂++

∂∂
∂∂++

∂∂
∂∂−−==

∧∧∧∧∧∧

LdE  V  V
b

a

ba ⋅⋅−−==−− ∫∫
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THE ELECTRIC FIELD IS CONSERVATIVE

The work done in moving a charge
is independent of the path taken:

⇒⇒ E is zero inside a closed empty cavity in a perfect conductor

ELECTRIC POTENTIAL ENERGY CALCULATIONS

Method 1: Integrate the electric field

1. Find E if it is not given (e.g., use Gauss’s Law)

2. Choose the position of zero V (if it is not given)

                                                   Forget about the sign:
3. Put just find the magnitude of ∆∆V

4. Use common sense and the definition of V to determine the 
sign of ∆∆V :

If you would need to PUSH a
positive charge against E  to
go from a to b then

Vb > Va Analogy: pushing a ball uphill

If a positive charge would be
pulled by E from P1 to P2

then

Va > Vb Analogy: A ball rolling downhill

0  LdE ==⋅⋅∫∫

LdE  V
b

a

⋅⋅==∆∆ ∫∫

a

b b

a
Q

b

a a

b

Q
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Examples: V at distance r from a point charge  
r4

Q  V
0πεπε

==

∆∆V due to a plane of charge (close analogy with 
a uniform gravitational field)

∆∆V due to a long cylinder of charge

Method 2:  Use the principle of superposition

1. Divide the charge distribution into many small elements.

2. Regard each element as a point charge and find its

contribution to the potential using  
r4

Q  V
0πεπε

== .

3. Integrate over the whole charge distribution to find the 
total potential.

EQUIPOTENTIAL SURFACE V is the same everywhere

⇒⇒ E points perpendicular to an equipotential surface (e.g., the
 surface of a conductor).

ELECTRIC ENERGY

For a system of n point charges i

n

1i

itot VQ
2
1  U ∑∑

==

==

where Vi = potential at the position of charge Qi due to the
combined effects of all the other charges.

Energy of a charged conductor: QV
2
1  U ==

Examples: - Conducting sphere
- Parallel plate capacitor
- Etc.
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ENERGY DENSITY OF THE ELECTRIC FIELD 2
0E2

1  u εε==

CAPACITANCE, C In general V ∝∝ Q C = Q/V

⇒⇒ Energy of a charged conductor is   
C
Q

2
1  CV

2
1  U

2
2 ====

Finding C:

1. Imagine ±±Q placed on conductors.
2. Find E (e.g., use Gauss’s Law).
3. Find |∆∆V|   (never mind the sign).
4. Put C = Q/V - Q cancels out

- C depends only on the size, shape,
separation of the conductors

Examples: - Conducting sphere - Parallel plate capacitor
- Spherical capacitor - Cylindrical capacitor

Capacitors in parallel: Ctot  = C1 + C2 (V is same for both)

Capacitors in series : 
21tot C

1  
C
1  

C
1 ++== (Q is same for both)

DIELECTRICS AND POLARISATION

K
E  E  E  E o

potot ==−−==

When the medium is not a vacuum, simply replace εε0 with κκεε0.

ELECTRIC CURRENT I = dQ/dt I ∝∝ E ⇒⇒ I ∝∝ ∆∆V

Resistivity and resistance: R 
L
A

==  ρρ L = length; A = Area

Ohm’s Law: I 
V

R
==  

∆∆

This equation defines the
DIELECTRIC CONSTANT

K  ( ≥≥  1)
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ELECTROMOTIVE FORCE, �

� = PE gained by one Coulomb of charge in passing through 
source of emf (analogy of water pump working in the 
Earth’s gravitational field)

� = U/Q Energy per unit charge
⇒⇒ Units are same as Potential, Volts

Note: emf is NOT a force

ELECTRIC POWER    
dt
dU    P ====   ���    = �,

Power dissipated (as heat) in a resistor P  =  I2R  =  V2/R

KIRCHHOFF’S LAWS

Voltage Law: For any closed loop in a circuit, the sum of all 
emfs and potential drops is zero.

Current Law: The sum of all currents flowing into a node is 
zero.

STEP RESPONSE OF THE RC CIRCUIT

(Example of a first-order linear system)

Switch closed at t = 0
Capacitor charges up

1. Use KVL to derive differential equation for Q.
2. Separate variables, Q on left, t on right
3. Integrate and use initial conditions to find constant of

integration →→ find Q(t).

�

R

C

i(t)

Q(t)
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THE MAGNETIC FORCE

Caused by charges in MOTION (i.e., currents)

(( )) 21212
210 rvv

r4
QQ  F

∧∧

ππ
µµ==

Note: Magnetic force is perpendicular to v   ⇒⇒  it doesn’t 
change the speed of the particle, only its DIRECTION

THE MAGNETIC FIELD

Defined by )Bv(Q  F ××==

Magnetic field at P due to
moving Q is

)rv(
r4
Q  B

2
0

∧∧

××
ππ

µµ==

MAGNETIC FIELD LINES

Example of charge moving OUT OF PAPER →→ magnetic field lines
form CLOSED LOOPS

MAGNETIC FLUX

Flux through small flat area ds is   dΨΨ  =  s.dB

i.e.,  Flux ≡≡  (Field)(Area)

GAUSS’S LAW FOR THE MAGNETIC FIELD

(Magnetic field lines form closed loops; there are no magnetic
monopoles)

Ad
Area dA

B

0  AdB  ==⋅⋅==ΨΨ ∫∫

F

r
∧∧

21

v1

v2

Q1

Q2

P

B  (outwards)

r
∧∧

Q

v

r
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THE LORENTZ FORCE

If Q moves with velocity v  in an electric field E and a magnetic
field B  then force on it is

[[ ]])Bv(  EQ  F ××++==

Examples: Velocity selector
Magnetic field only →→ circular or spiral motion
Hall effect: Conductor in magnetic field

→→ Magnetic force on charges
→→ Separation of charges
→→ Transverse electric field 

(direction gives sign of carriers)
→→ ∆∆V across sides ∝∝ no. density of 

the carriers

BIOT-SAVART LAW Gives B  due to a CURRENT- CARRYING 
ELEMENT

)rLd(
r4
I

  Bd
2

0
∧∧

××
ππ
µµ==

To find the total field at P,
integrate over the whole
length of the wire.

FORCE ON A CURRENT- CARRYING
WIRE IN A MAGNETIC FIELD

 )Bv(dQ  Fd ××== ⇒⇒  )BLd(I  Fd ××==

If B  O wire, then dF = BIdL

⇒⇒ Force between two parallel wires is   
r2
II  F 210

ππ
µµ==

(basis of the definition of the Ampere).

dL

P
dB  (outwards)rI

r
∧∧

dL

B
I
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MAGNETIC DIPOLE ( ≡≡ CURRENT- CARRYING LOOP)

DIPOLE MOMENT VECTOR µµ

Magnitude = nIA = (No. of turns)(Current)(Area)
Direction = ⊥⊥ to the plane of the loop, given by

the right hand rule

TORQUE on a magnetic dipole due to external B :  ττ µµ  B  == ××

RELATIVE PERMEABILITY If the medium is not a vacuum, 
then replace µµ0 with µµ0µµr

µµr ≈≈ 1 for most materials

AMPERE’S LAW Relates the magnetic field to the current 
distribution that produces it

Using Ampere’s Law:

When? When you are given some distribution of charge and 
you want to find the magnetic field

How? 1. Draw a diagram showing the magnetic field pattern
2. Choose an imaginary closed path to make the line 

integral easy

i.e., make L and B d either parallel or perpendicular
View along the axis (current flowing out of the page,
so that you can draw the path in the plane of the page.

3. Work out LdB ⋅∫
4. Decide how much current, Ienc, is flowing through 

the loop.
5. Equate the results of 3 and 4 and rearrange to find B.

Examples: - Long thin wire:  B = µµoI/(2ππr)
- Long solid cylinder (similar to wire)
- Long solenoid: B = µµonI

µµ

I

encoI  LdB µµ==⋅⋅∫∫
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ELECTROMAGNETIC INDUCTION

Changing B →→ Induced E

Introduced through MOTIONAL emf  :

� = vBL

→→ � =  Rate of sweeping out of magnetic flux:

�  =
dt
d ΨΨ−− or

dt
d

  LdE 
ΨΨ−−==⋅⋅∫∫

The emf induced around a closed loop  = - Rate of change of
magnetic flux through the loop

Negative sign  ≡≡ LENZ’S LAW: The induced emf OPPOSES 
the CHANGE in B  that produces it
(i.e., it tries to keep B  constant).

INDUCTANCE

Changing current in one circuit
→→ changing B
→→ changing ΨΨ
→→  induced E in another circuit (Mutual Inductance )

in the same circuit (Self Inductance)

Inductance  =  Flux/Current

v

B  (inwards)
+

L

FARADAY’S  LAW
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MUTUAL INDUCTANCE SELF INDUCTANCE

M =  
ΨΨ21

1I
L =  

ΨΨ
I

ΨΨ21 = Flux through circuit 2 ΨΨ = Flux through circuit
due to current I1 in due to its own current
circuit 1

� � �=
dt
dIM 1−− ��� =

dt
dIL −−

Finding M or L:

1. Assume current I flows in the circuit (L) or in one of the
circuits (M)

2. Find B  (e.g., using Ampere’s Law)
3. Find ΨΨ, the flux through the (other) circuit
4. Put L or M = ΨΨ/I.  I will cancel out.

Inductance depends only on the size, shape, no. of turns, etc.

ENERGY STORAGE IN INDUCTORS

Energy  stored  =  amount of work which
must be done in order to increase the
current from 0 to I against the opposing
(back) emf induced by the changing current.

ENERGY DENSITY OF THE MAGNETIC FIELD

0

2B
2
1  u

µµ
== [SI units: J m-3]

FINDING MAGNETIC ENERGY

1. Find B as a function of position
2.  Hence find u
3. Define a suitable VOLUME ELEMENT and integrate

u d(Volume) to find Utot.

2LI
2
1U ==

(Derived using example
of solenoid)
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SUMMARY OF MAXWELL’S EQUATIONS
(IN INTEGRAL FORM)

o

enclosedQ    AdE
εε

==⋅⋅∫∫ Gauss’s Law for the Electric

 Field
 

0    AdB ==⋅⋅∫∫ Gauss’s Law for the Magnetic 

Field

dt
d

    LdE
ΨΨ−−==⋅⋅∫∫ Faraday’s Law of Induction

dt
d

    I    LdB ooo

ΦΦεεµµ++µµ==⋅⋅∫∫ Maxwell’s modification of

Ampere’s Law

NB: ⇒ Changing B  generates E

⇒ Changing E  generates B

Changing E

Faraday’s Law  Modified Ampere’s Law

Changing B  

⇒⇒ OSCILLATION OF ENERGY BETWEEN THE ELECTRIC
AND MAGNETIC FIELDS

⇒⇒ ELECTROMAGNETIC WAVES EXIST

2

1

3

4

3

4


