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Quantum Mechanics A PHY-319  Note Set No. 3 
 
The Finite square well. 
 
We have already solved the problem of the infinite square well. Let us now solve the 
more realistic finite square well problem. Consider the potential shown in fig.1, the 
particle has energy, E , less than 0V , and is bound to the well. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: A finite square well, depth, 0V , width L . 
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The solutions to this differential equation are: 
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xx eDAe  '   but since 0 as x , 0'D  

we get xAe    for region 3… 
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…which we have already encountered in the infinite square well, since the potential is 
symmetric, we have even and odd parity solutions, namely: 
 

 kxC cos  for even parity (n odd) 

and  kxD sin  for odd parity (n even) 
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Table 1: summary of wavefunctions of the finite potential well. 

 
Clearly, for parity +1   and for parity -1 
 

AB      '' AB   
 



 3

Now we have to match both the wavefunction, )(x , and its derivative, 
dx

xd )(
, at 

the well boundaries, namely at
2

L
x  . Of course, we have to do this twice, since we 

have even and odd parity solutions… 
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Dividing eq(2) by eq(1) to eliminate C  and A  gives: 
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We can carry out the same analysis for the negative parity solutions and obtain: 
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there is only one unknown, the energy, E ; so we should be able to solve for the 
energy. It transpires that both equation (3) and equation (4) are transcendental, that is, 
they cannot be solved analytically, we can, however, solve them numerically. In order 
to do so, we shall rewrite them in a more convenient form, using dimensionless 
parameters,   and 0 . 

  is simply the argument of the trigonometric function: 
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Now, 0  is defined by: 

020

2

2
V

mL


   

and is called the potential-strength parameter, since it contains the depth of the 
potential well, 0V , ( and its width, L ). 
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So our transcendental equations (3) and (4) become: 
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Reiterating, since E
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 , if we can solve these for  , we will obtain the 

energy eigenvalues nE  for our finite well. 

Figure 2:  A plot of 1
2

0 










 versus   for three values of 0  (2, 5 and 8). 

 
 

Figure 3: Plots of  tan  for even parity solutions and of   





 

2
tancot

  for 

odd parity solutions versus  . 

0

0 2 4 6 8 10



2

5

8

0

0 2 4 6 8 10


EVEN
ODD



 5

 

We can superimpose a plot of 1
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 onto plots of  tan  and 
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  to graphically solve the two equations. For example taking an 

electron in a well, width 4Å and depth to be 14eV we can calculate 83.30  . A plot 

of  1
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 for  83.30   is shown in figure 4, together with the trigonometric 

function plots. The curves intersect at three values of   (circled), corresponding to 
the energy levels of the three bound states. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: a graphical solution for the energy eigenvalues of the three bound states of 
an electron in a 4Å, 14eV finite potential well. 
 
The values of   obtained are:  

24.1 , corresponding to 1n  ,even parity 
45.2 , corresponding to 2n  ,odd parity 
54.3 , corresponding to 3n  ,even parity 

and the corresponding energy eigenvalues are: 
eVE 47.11  , eVE 74.52   and eVE 99.113    

Note that these are much lower than the corresponding energy eigenvalues for an 
infinite square well of the same width ( eVE 36.21  , eVE 43.92   and 

eVE 24.213  ). This is not surprising as the wavefunction in the finite potential 
well extends into the classically forbidden region, so the corresponding wavelengths 
are longer than those in the infinite well, resulting in lower energies (see figure 5). 
 

0

0 1 2 3 4 5



EVEN
ODD
Z = 3.83

/2  3/2 



 6

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: The three bound states in a 0.4nm, 14eV one-dimensional finite quantum 
well. The wavefunctions are shown schematically. Note how the corresponding 
energy levels of an infinite well are much higher. 
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