PHY 116 From Newton to Einstein Exercise Sheet 2: Kinetics

Date issued:	3 rd October 2012	Hand in by 4pm, 8 th October 2012
--------------	------------------------------	--

All questions were taken from Young and Freedman

A1) A person sees an object and records its position as a function of time and distance. It is given by

 $\vec{r}(t) = -(5.0 \text{ m/s})t \hat{i} + (10.0 \text{ m/s})t \hat{j} + [(7.0 \text{ m/s})t - (3.0 \text{ m/s}^2)t^2]\hat{k}.$

- a). Find the displacement, velocity and acceleration vectors for the object at t = 5.0s.
- b). Is the acceleration of the object constant, or does it change with time? (Explain why.) [4]
- A2) The human body can survive a negative acceleration trauma incident (sudden stop) if the maximum acceleration is less than 250 m/s² (approximately 25g). If you are in a car accident with an initial speed of 105 km/h and are stopped by an airbag, over what distance must the airbag stop you if you are to survive the crash?
- A3) A brick is dropped (with zero initial velocity) from the roof of a building. The brick strikes the ground in 2.5s. Ignoring air resistance,
 - a) How tall, in metres, is the building?
 - b) What is the magnitude of the brick's velocity just before it reaches the ground?
 - c) Sketch a_y -t, v_y -t, and y-t graphs for the motion of the brick. [5]
- A4) A car is stopped at a traffic light. It then travels along a straight road so that its distance from the light is given by $x(t) = bt^2 ct^3$, where b = 2.40 m/s² and c = 0.12 m/s³.
 - a) Calculate the average velocity of the car for the time interval t = 0 to t = 10s.
 - b) Calculate the instantaneous velocity of the car at i) t = 0, ii) t = 5s and iii) t = 10s.

[3]

- c) How long after starting from rest is the car at rest again?
- B5) A ball is thrown vertically up from the ground with a speed v_0 . At the same instant, a second ball is dropped from rest from a height *H*, directly above the point where the ball was thrown. There is no air resistance.
 - a) Find the time at which the two balls collide.
 - b) Find the value of H, in terms of v_0 and g, such that at the instant when the two balls collide, the first ball is at the highest point of its motion. [5]

Note: The question numbers start with A or B to denote the level of difficulty.