
 8–1 Laboratory exercise 8 

Laboratory Exercise 8 – LIGHT AND OTHER 
ELECTROMAGNETIC WAVES 

In the three parts of this exercise you will study some of the properties of electromagnetic 
waves. Whatever their wavelength, all e.m. waves travel at the same speed in a vacuum, can be 
reflected, refracted and scattered, and show interference effects. All these and more will be dealt 
with in detail in future physics courses; here we demonstrate some of them using two very 
different wavelengths, from 10–10 m (X-rays) through 10–6 m (visible light). The techniques used 
are different but the phenomena you will see are the same, although on quite different scales. 

Part A: Refraction of light 

Introduction 
Newton found that a glass prism separated white light into its spectral colours. In this part you 
will carry out a refined version of Newton’s experiments using a prism spectrometer to 
measure the deviation of light of different wavelengths when it passes through a prism. The 
property of bending light is called refraction, and is measured by the refractive index, µ. (The 
refractive index is actually the ratio of the speed of light in a vacuum to the speed in the 
transparent medium.) When µ, and hence the angle of bend, varies with the wavelength λ the 
effect is called dispersion. Every transparent material exhibits dispersion. In some optical 
instruments this can be a nuisance, producing coloured effects when white light is used, but in 
the prism spectrometer a large dispersion is useful because it improves the instrument’s 
resolution, or ability to separate two close wavelengths. 

The refractive index of colourless transparent materials decreases as the wavelength increases. 
This behaviour is called normal dispersion, although we now know that the opposite behaviour, 
naturally called anomalous dispersion, is just as common. In 1836 the mathematician Cauchy 
suggested that normal dispersion was well described by the expression: 

Here A and B are constants for the material. In fact Cauchy added a third term on the right, C/λ4, 
but this is very small and usually ignored.  

In this part you will check Cauchy’s formula using a number of spectral lines whose 
wavelengths are accurately known, and you will do it for glass prisms of both low and high 
dispersion. Although there are some exceptions, denser glass has higher refraction, and greater 
dispersion, than less dense glass and the commercial names for different glasses (Light Crown, 
Extra Dense Flint and so on) reflect this. The usual way to describe the optical properties of 
spectrometer glass is to list not the Cauchy constants A and B, but some combination of the 
refractive indices at certain specified wavelengths. By measuring these you should be able to use 
a table of glass types to find out what type of glass your prisms are made of. 

The refractive index is measured as follows. Light passing through the prism is deviated by an 
angle D. As the prism is rotated some position is found at which D has a minimum value, Dmin, 
the angle of minimum deviation. Textbooks on optics show that 

where A is the angle of the refracting edge of the prism — see figure 1. Light passes 
symmetrically through the prism when it is refracted through the angle of minimum deviation. 
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Setting up the spectrometer 
This instrument is capable of considerable precision when 
properly adjusted, so it is worth spending a little time 
doing it carefully. The aim is to make light from the slit 
parallel as it passes through the collimator and to bring 
this parallel light to a focus on the cross-wires of the 
telescope’s eyepiece. The prism on its table must refract 
this parallel light in a plane perpendicular to the common 
rotation axis of table, collimator and telescope. Follow 
each step of the following simplified procedure in 
sequence — refer to figures 1, 2 and 3. 

• Looking through the telescope eyepiece against a bright 
white background, bring the cross-wires into sharp focus. 

• Carefully take the instrument into the main lab. Adjust 
the objective lens of the telescope relative to the 
eyepiece/cross-wire combination so that the image of a 
distant object on the horizon is sharply focused on the 
cross-wires. The telescope is now adjusted. 

• Illuminate the slit with a sodium lamp and view it 
through the telescope in the straight-through position, without a prism. Adjust the collimator to 
give a sharp image of the slit, and make this as narrow as possible while still passing light along 
its whole length. Make sure the slit is precisely vertical. The collimator is now adjusted. 

• Place the prism on the table with its refracting edge pointing to the collimator and one of its 
refracting faces AB perpendicular to the line XY joining two of the levelling screws, as in 
figure 2. View the slit by reflection in AB, and by adjusting X and Y centre the image on the 
telescope’s cross-wires. Repeat this for reflections in the face AC but this time adjust only 
screw Z. Check the reflection in AB and make small adjustments to X and Y, going through the 
sequence again if necessary until both faces reflect the light centrally down the telescope. The 
prism on its table is now adjusted. 

NOTE: The prisms are precision optical pieces. Handle them only by the top and bottom 
triangular surfaces. Do not touch the refracting faces. If they get finger-marked, ask for an 
optical wipe and clean them carefully. 

Hint: In what follows you need to view an image of the slit after the light has reflected off, or 
passed through, the prism. Always first push the telescope out of the way and use your naked 
eye to see the image, then when you know what to look for and roughly where it is, look 
through the telescope. The commonest cause of frustration in optical measurements is squinting 
through an instrument when it’s pointing in the wrong direction. 

Measuring the refracting angle A 
• With the prism as shown in figure 2 and the prism table securely clamped, set the image of the 
slit, reflected in face AB, as accurately as you can across the intersection of the cross-wires, 
clamping the telescope and using the fine movement screw for the last delicate adjustment. 
Record both vernier scales which register the telescope’s angular position. Unclamp the 
telescope and set it equally carefully to view the slit reflected in face AC, and again record its 
angular position on both scales. The difference between the two settings is 2A. Take the average 
of your two determinations. 

 

 

Figure 1 Definitions of A and Dmin 
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Measuring the angle of minimum deviation 
• Rotate the prism table to a position like 
position 1 in figure 3, where you judge 
the light to be passing roughly 
symmetrically through it. Use your naked 
eye to see the image of the slit — the 
yellow spectral lines of sodium will be 
prominent but you will also see fainter 
lines of other colours. Using the 
telescope, view the yellow lines (you may 
be able to resolve the two lines — if so 
choose the one of shorter wavelength, 
which is deviated more than the other) 
while you rotate the prism table back and forth; the image will move towards and then away 
from the straight-through position. It is at its most forward position when the light undergoes 
minimum deviation.  

• Clamp the table and use the fine adjustment screw to set the precise position of minimum 
deviation. Set the cross-wires exactly on the image and check again that the deviation is a 
minimum. Record the vernier readings of both telescope scales. 

• Now rotate the prism table to position 2, where the deviation is in the opposite direction, and 
repeat the measurements on this side.  

• The angle turned through by the telescope between positions 1 and 2 is 2Dmin. Take the average 
of your determinations and, with your knowledge of A, find the refractive index for the yellow 
sodium lines. 

• Replace the sodium lamp with mercury, cadmium and hydrogen lamps, and repeat your 
measurements of Dmin for the brighter spectral lines from each. The wavelengths can be obtained 
from the laboratory technicians. Plot µ versus λ as you take your measurements. [Students who 
do this later and find that a point lies well off a smooth curve because they have misidentified a 
spectral line have no excuse. Take longer in the lab to calculate and plot graphs.]  

• By means of another suitable graph, attempt to verify Cauchy’s relationship. 

Dispersion in different glass 
• Replace the first prism by the second, made of a different, denser, glass. Repeat the 
measurements you have just made so as to obtain values for the refractive index for the 
following spectral lines: sodium at 589.0 nm (the D line), hydrogen at 486.1 nm (the F line), 
hydrogen at 656.3 nm (the C line). Hence calculate the reciprocal dispersive power V: 

for both prisms. With this information on the optical properties of the two types of glass, attempt 
to find a closely similar type in the table in Kaye and Laby. 
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Part B: The velocity of light 

Introduction 
In this exercise you will measure the velocity of a beam of light of wavelength λ about 500 nm, 
both in a vacuum and when travelling through transparent plastic. The methods used in 
exercise 7 are no use here. As you know, the speed of light, c, is about 3 × 108 m/s, so 
substitution in c = f λ yields a frequency f of about 6 × 1014 Hz, which is too high to be measured 
by an electronic frequency meter even if the very short wavelength could be measured 
accurately. The trick here is to vary the intensity of the light source at a frequency very much 
less than f. The change in intensity is carried along by the light wave, travelling at the same 
speed c and appearing as a sinusoidal variation of amplitude with a very much longer 
wavelength than that of the carrier wave itself. In other words, the carrier wave is modulated 
by the lower frequency signal — see figure 4. [This is the way that AM (amplitude modulation) 
radio works. The signal to be transmitted is impressed on a constant frequency carrier wave as a 
change in amplitude. In FM (frequency modulation) radio the amplitude of the carrier wave 
stays the same but its frequency is modulated.] 

The modulation frequency used here is 50 MHz or 60 Mhz, depending on which apparatus you 
are using — if in doubt, check with a demonstrator. Deduce the corresponding modulation 
wavelength λm. The light is received by a photodiode detector whose response follows the 
modulation at 50 or 60 MHz. Even this reduced frequency is too high to be displayed on the 
oscilloscopes we use, so another electronic technique is used to reduce the frequency still 
further. A separate oscillator unit is tuned to a frequency slightly different from 50 or 60 MHz, 
e.g. 59.9 MHz. When this signal is mixed with a 60 MHz signal from the light source or 
photodiode the two ‘beat’ together producing a combined signal whose frequency is the 
difference of the two — this is called the heterodyne technique. The mixed signal has a 
frequency of ~100 kHz and can easily be displayed. Figure 4 shows that a 50 or 60 MHz signal 
which has travelled only a few metres to the receiver will be considerably out of phase with the 
signal from the source. A feature of the heterodyne technique is that it preserves this phase 
relation, so a measurement of the phase difference between the mixed low-frequency signal 
from the source and the mixed low-frequency signal from the receiver is a direct measure of the 
phase lag in the 50 or 60 MHz signal. Converting this phase difference to a fraction of the 
modulation period gives the time for the wave to travel a known distance to the receiver, and 
hence the wave velocity. 

 

Figure 4 Amplitude modulation of carrier wave 
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Apparatus 
This consists of a box containing the light source, modulator, receiver, and mixer, and a there-
and-back path of a few metres for the light. The source is a light-emitting semiconductor diode 
(LED) which emits red light; a 50 or 60 MHz oscillator modulates the voltage across the LED. 
The light passes through a lens L1 (see figure 5) whose function is to produce a wide parallel 
beam which is sent down one arm of an optical bench and back along the other arm after 
reflection in two 45° mirrors M1 and M2. Another lens L2 focuses the parallel returning light 
onto a light-sensitive photodiode whose output signal oscillates at 50 or 60 MHz in phase with 
the returning light. Correct optical alignment is essential in this experiment, and it is worth 
spending some time getting it right. 

• Place L1 with its centre accurately level with the LED. Let the light that has passed through L1 
fall on the screen carrying a circle of the same diameter as L1 and L2. This screen is used to 
trace the path of the light to the mirrors and back to L2. A truly parallel and aligned beam will 
exactly fill the circle and remain at the same height all the way along the path. This needs to be 
done in a darkened lab. Move the screen along the rail to M1 and adjust L1 as necessary to keep 
the beam parallel and on axis. Repeat with the screen on the return rail, adjusting only M1 and 
M2 by the screws on their back face (L1 should not need further adjustment if you have been 
careful) to bring the beam centrally onto L2, which should then be adjusted so as to focus the 
beam onto the photodiode. Final adjustments can be made by displaying the signals from the 
heterodyne mixer on the oscilloscope and maximising the response of the receiver relative to the 
transmitter. Ideally, the received signal should be the same size for all distances of the mirrors. 

Measurements 
• Use the XY mode of the ’scope to display the Lissajous figures formed by the outgoing and the 
incoming signal. Each mirror distance corresponds to a different phase lag between the two 
waves, so the figures in general are elliptical. If the sine waves have the same amplitude and are 
exactly in phase the ellipse becomes a straight line at 45° to the X axis; if they are 180° out-of-
phase the line slopes the other way. A circle is produced at 90° phase difference. By adjustment 
of the channel gains you should be able to get ’scope traces of roughly the same amplitude in 
both X and Y. There is a phase control knob on the supply unit which allows you to select to 
some extent the light path which gives no apparent difference in phase (clearly this is necessary 
since the phase difference is actually zero only when the light path is zero, which is 
experimentally most inconvenient!). Check that the phase can be changed from 0° to 180° as the 
mirrors are moved along the length of the bench.  

• When you are satisfied, make careful measurements of the spacing between the two mirror 
positions corresponding to 0° and to 180° phase difference. The extra distance travelled by the 
light between these two positions is a half-wavelength of the 50 or 60 MHz modulation wave, so 
the distance the mirrors move is one-half of this, that is λm/4.  

 

Figure 5 Apparatus 
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• Repeat this measurement with a number of different settings of the phase control knob so as to 
get a good idea of the variability of the readings and hence their statistical error. Deduce the 
velocity of light in air. The uncertainty in your value will include a contribution from the 
statistical error just mentioned, and also a systematic error due to uncertainty about the precise 
frequency of the 50 or 60 MHz oscillator. 

Speed of light in acrylic plastic 
Two transparent acrylic rods (Perspex, Lucite and Plexiglas are trade names for this plastic) are 
to be placed on the outward and return rails close to the lenses. The mirror unit is brought close 
behind them and the phase control knob adjusted for a straight line display, whether 0° or 180° 
phase difference is immaterial. The rods are removed and the mirrors moved away until the 
same straight-line Lissajous figure is obtained. The distance between the two mirror positions 
represents the extra time taken for the light to travel the combined length L of the perspex rods 
in comparison with the same length of air.  

To the light wave, the rods appear to be longer than the same actual length of air. This apparent 
length due to the slower light speed is called the optical path. It is equal to the actual length 
multiplied by the ratio of light speeds in air (almost the same as vacuum) and plastic, a ratio that 
as you know is the refractive index µ. So the movement S of the mirrors introduces an extra 
distance 2S equal to the difference between the optical path in plastic, µL, and the optical path in 
the same length of air which is the actual length L: 

• Make several measurements of the mirror movement needed, using slightly different initial 
settings, and deduce a value for µ. With enough measurements, ten or more, you will be able to 
assign a standard error to µ with some confidence. Hence find the velocity of light in the plastic. 

The invariance of c 
Suppose there are two sets of apparatus like this in the lab, at right angles to one another. 
Careful measurements of the speed of light in a vacuum were carried out by Michaelson and 
Morley using such a geometrical set-up (but a quite different technique). They had expected to 
find a difference because of the motion of the Earth, just as the measured sound speed on a 
windy day depends on the direction of the wind. The motion of the Earth through the ‘æther’ in 
which the light waves were thought to be travelling should have produced a similar effect. 
Michaelson and Morley found no evidence at all for this ‘æther wind’ effect; your measurements 
will not be precise enough for you to make such a claim. Independently, Einstein had concluded 
that the ‘æther’ is unreal, and that the speed of light is a universal constant independent of the 
motion of source or observer — a conclusion that led directly to his theory of relativity. 

Part C: X-ray diffraction 

Introduction 
In this part we study what happens when electromagnetic waves pass through a regular three-
dimensional array of small scatterers. The effects were first studied by the Braggs, father and 
son, who shone X-rays on crystals and found strong reflections in some directions but nothing 
elsewhere. They interpreted this as the effect of scattering not just from individual atoms but 
from whole sheets of atoms lying in parallel planes a distance d apart (see figure 6). When the 
glancing angle θ is such that the extra distance travelled by the X-rays between successive sheets 
of atoms, 2d sinθ, is n λ, a whole number of wavelengths, all the scattered X-rays are in phase 

2S = µ !1( ) L
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and interfere constructively. Thus a large signal is seen in that direction as if the sheets of atoms 
had, like mirrors, reflected the X-rays. But this is not specular reflection — an enhanced signal 
is seen only in those special directions for which the so-called Bragg condition 

is satisfied. Knowing λ, the atomic spacing d can be found from these X-ray diffraction studies. 
This is the basis of much modern crystallography and molecular biology. 

In this part you are given an X-ray 
diffraction pattern that has been 
recorded photographically. The 
pattern is produced by shining a 
narrow and tightly parallel (within 
0.1°) X-ray beam on a thin wire of 
(in this case) tungsten, comprised of 
millions of tiny crystals lying in 
completely jumbled and random 
orientations (figure 7). The majority 
of these crystals are not in any 
special position and the beam passes 
through them unscattered. By 
chance, though, a few will be within 
about 0.1° of one of the Bragg 
angles, θ, relative to the direction of the beam, and these will give Bragg reflections at an angle 
of 2θ to the beam. So these reflected X-rays will travel outwards along a cone of apex angle 4θ, 
and will be recorded where they strike a strip of film wrapped around a cylindrical tube. The X-
ray beam enters and leaves this tube through holes, and the whole arrangement is an X-ray 
camera for powder diffraction (the word ‘powder’ simply meaning that the target is not a 
single crystal but is made up of many tiny crystals). You can see on your film that the images 
are actually curved, since they are sections of a conical surface. 

Measurements 
The diameter of the camera used to take these photographs was 57.30 ± 0.02 mm. A 
measurement of the spacing between corresponding images to left and right of the beam hole is 
a measurement of the arc length around the original cylinder which, divided by the camera’s 
radius, will give the apex angle 4θ in radians. Note that the diameter of the camera is carefully 
chosen so that exactly half of the left-right separation, measured in mm, is numerically equal to 
the angle θ in degrees (check that you understand this). 

• Do not remove the film from its envelope. Tape it down onto a sheet of paper, fix an accurate 
ruler along the equatorial line of the film, and measure the coordinates of corresponding lines to 
the left and to the right. Try to estimate distances to one-fifth of a millimetre division. Tabulate 
your readings and evaluate the angle θ for each line. Note that the sum of the left and right 
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readings for each line should be constant — the extent to which it varies gives you an idea of the 
measurement inaccuracy and hence the error in the results. 

Evaluation 
You will have about eight values of θ, each corresponding to Bragg reflection. All these are 
first-order, i.e. n = 1. Each corresponds to a different value of d, the atomic spacing. To see this 
study figure 8, which shows a square crystal lattice of side a in just two dimensions. Besides the 
lines of atoms, a apart, running vertically and horizontally, there are other lines, less densely 
packed with atoms, running at angles as shown. A little geometry using Pythagoras’ theorem 
will convince you that the spacings between these various sets of lines are all of the form  

where h and k are small integers — they are the number of repetitions of the simple unit cell that 
defines the direction of the lines. In the examples shown: 

   h = 1 and k = 0  ⇒  d1 = a/1 = a 
   h = 1 and k = 1  ⇒  d2 = a/√2  
   h = 1 and k = 2  ⇒  d3 = a/√5 
and so on. 

A similar rule applies in three 
dimensions. The spacings between 
sheets of atoms responsible for each of 
the Bragg reflections are: 

where h, k and l are all small integers. 
Inserting this expression into the 
Bragg equation with n = 1, squaring 
and rearranging gives 

That is, when divided by the appropriate small integer (h2 + k2 + l2), each value of sin2θ gives the 
same value, namely λ2/4a2. Hence knowing λ, the atomic spacing a can be found.  

• You can do this by trial and error, finding what sequence of integers gives the same value, 
within errors, for each diffraction image. Or you can seek, again by inspection, the highest 
common factor of your sin2θ values — make an informed guess at the number which will 
divide each of them an (almost) exact whole number of times. Having found the highest 
common factor roughly, divide each entry in your table by the exact whole number, which is the 
value of (h2 + k2 + l2) for that line, and average the quotients. (For reasons which do not concern 
us here, not all such numbers are possible.) 

• The X-rays used to take this photograph had wavelengths of 1.540562 × 10–10 m and 
1.544390 × 10–10 m, one being rather more intense than the other. You may be able to distinguish 
separate Bragg reflections from the two wavelengths. Deduce the atomic spacing a in tungsten. 
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