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Laboratory Exercise 7 – MEASUREMENTS IN ASTRONOMY 

Part A: The angular resolution of telescopes 

Introduction 
For astronomical observations, reflecting telescopes have replaced the refracting type of 
instrument. Large mirrors with great light-gathering power are lighter, more rigid and easier to 
control than equivalent lenses; lenses are also plagued by chromatic aberration which brings 
different colours to a focus at different points. One of the largest refractors made, the 28" at the 
Old Greenwich Observatory, is a beautiful instrument but suffers badly from chromatic 
aberration as you will find if you get an opportunity to use it. Both reflectors and refractors, 
however, have an intrinsic limit to their resolution, that is to their ability to distinguish two 
objects which appear very close together in the sky with a very small angular separation. This 
quality of a telescope, called its angular limit of resolution, or just its resolution, is determined 
by its aperture — the larger the aperture, the greater the resolution (and hence the smaller the 
angular separation that can be resolved). The object of this part of the exercise is to set up a 
reflecting telescope, to measure its resolution, and to compare this both with that of the unaided 
eye and also with an estimate from theory. An example of an angular measurement in astronomy 
completes this part. 

Adjusting the telescope 
The primary mirror of a reflecting telescope is a paraboloid, which brings parallel light from a 
distant object to a focus in front of it. It is therefore necessary to move the image out of the 
incident beam so that it can be observed without obscuring the incoming radiation. In the 
Newtonian arrangement this is achieved by reflecting the light off a small flat mirror set at 45° 
to the telescope axis and just in front of the focal plane (see figure 1). The image is then 
observed by an eyepiece which acts essentially as a microscope. 

• The components of the telescope can 
be clamped to the triangular section of 
rigid steel, the ‘optical bench’. Measure 
the focal length of the primary as 
accurately as you can (the error should 
not be greater than 1 cm) by using a 
distant light as a source and finding the 
distance of its image from the vertex of 
the mirror. View this image using a 
paper screen moving along the 
triangular beam.  

• Measure the diameter of the primary mirror (its aperture, A) and also the smaller diameter of 
the secondary mirror.  

• Place the secondary at a position such that when it is at an angle of 45˚ the image is seen 
clearly in the eyepiece. (It may help to look first without the eyepiece and barrel and adjust so 
that your eye is seen reflected.) Ideally, the image of light reflected from the primary should 
completely fill the secondary.  

• Make a scale drawing like figure 1 to see whether this is the case. Make any final adjustments 
while viewing the distant light source through the eyepiece. 
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Measurements 
• Use the resolution test card to measure the resolving power of both the telescope and your eye. 
Place the card in the laboratory as far as convenient from the telescope (at least 10 m if 
possible). View the sets of lines through the telescope and determine the set of smallest line 
spacing which can be resolved into individual lines. Use the ability to determine the direction of 
the lines correctly as evidence for resolution. Use the travelling microscope provided to measure 
the distance d between consecutive line centres in the set which can just be resolved. Measure 
also the distance D between the test card and the primary mirror. Hence calculate the small angle 
θ = d/D which is the experimental angular limit of resolution.  

• By similar measurements, find the angular limit of resolution of your eye — you may wish to try 
this for left and right eyes separately as well as together. Do this wearing spectacles or contact 
lenses if you normally do so. 

Note that this expression for θ gives the angle in units 
of radians rather than in degrees; recall that 
θ (radians) = (arc length)/radius (see figure 2). Thus 2π 
radians corresponds to a full circumference, or 360°, 
and so a radian is approximately 57.3°. A measure 
commonly used in astronomy in the arcsecond, or 
1/3600th of a degree. Therefore, one radian is 
approximately 2.06 × 105 arcseconds. 

Theoretical estimates of angular resolution 
Light, being a wave motion, must be treated by a theory which includes the effects of 
diffraction, that is the bending of wave trains as they go around obstacles or as they pass 
through apertures (as you see on a large scale when sea waves spread out on entering a harbour 
mouth). The primary mirror is an obstacle to the incoming light waves so they are diffracted to 
some extent, thus smearing out and confusing the images of two sources having a small angular 
separation. The smallest angular separation, θmin, which can just be distinguished (that is, the 
resolution) is determined by the ratio between λ, the wavelength of the light, and A, the diameter 
of the primary mirror. The ability to resolve overlapping images is a rather personal thing and 
there are several prescriptions (criteria) for the exact formula to use. One of them, the Rayleigh 
criterion, is based on the mathematical form of the diffraction patterns from circular apertures: 
it states that θmin = 1.22 λ /A. Other prescriptions such as the Abbé criterion (which omits the 
factor 1.22) are sometimes used. 

• Taking λ to be 550 nm, near the peak of the spectral curve for white light, use these criteria to 
calculate the theoretical angular resolution of the telescope and of the eye (for which the 
aperture is the diameter of the pupil, typically 3.0 mm). Compare the results with your 
experimental values. 

Angular measure and the distance of astronomical objects 
Astronomers measure angular positions in the sky. As the Earth circles the Sun the position of a 
nearby star shifts relative to that of more distant stars since its direction in the sky changes 
slightly. Figure 3 shows that in six months the position angle changes by an amount equal to the 
diameter of the Earth’s orbit divided by the star’s distance. Therefore, this distance equals the 
radius of the Earth’s orbit divided by the deviation of the position angle from its average value 
(a quantity called the parallax of the star). The distance will be in kilometres if the Earth’s 
orbital radius is also given in kilometres and the parallax is in radians. Astronomers find it more 
convenient not to bother with the exact value of the orbital radius but simply to call it an 

 

Figure 2 Definition of radian 

θ 

Radius 

Arc length 



 7–3 Laboratory exercise 7 

Astronomical Unit (AU), and also to measure angles in arcseconds (the parallax of most stars is 
less than 1 arcsecond). Using these units the distance of a star is measured in parsecs (pc) — the 
distance in parsecs is the reciprocal of the parallax in arcseconds. Thus 1 pc = 2.06 × 105 AU, or 
approximately 3 × 1013 km. 

• Besides their annual parallax, some stars show a real movement (proper motion) relative to 
more distant stars. Figure 4 shows two photographs of the same area of the sky, taken 10 years 
apart. One star, whose parallax is known to be 0.55 arcseconds, has moved appreciably during 
this time. Find it, measure the distance it has moved (estimate to a quarter of a millimetre using 
a good graduated rule), convert this distance to an angle using the fact that the photographs 
measure 40.5 arcminutes (1 arcminute = 60 arcseconds) in the horizontal direction, and calculate 
the velocity of the star across the line of sight. 

Part B: Line spectra, chromatic resolution and doppler shifts 

Introduction 
The spectrum of light from stars contains many sharp features, light or dark bands called 
spectral lines, that tell astronomers about the chemical composition and physical conditions on 
its surface. This is done by comparison with simple spectra produced in the laboratory. In this 
part you will use a diffraction grating to produce the line spectra of a number of elements, and 
will investigate how close in wavelength two lines can be before they become indistinguishable. 
This property is called the chromatic resolution of the instrument or sometimes, when there is 
no possibility of confusion with angular measurements (see part A) just the resolution. The 
better the resolution, the more closely one can investigate small wavelength changes caused, for 
example, by the Doppler effect. Finally, you will measure wavelength shifts in the spectrum of a 
star system that are actually due to relative motion of the stars. 

The grating spectrometer  
In this part you use a diffraction grating mounted on a precision rotating table. A parallel beam 
of light of wavelength λ striking one side of the grating will be diffracted, that is, deviated in all 
directions, as it passes through the apertures between the opaque lines of the grating. The 
transmitted light will interfere constructively (see exercise 1) at angles determined by λ and by 
the spacing d between the lines. In these directions (the principal maxima) the transmitted light 
intensity is greatest and a telescope set at these angles will see images of the source, a narrow 
slit parallel to the grating lines, in the colour of the wavelength selected. The expression for the 
angles of these principal maxima is: 

where the number n = 1, 2, 3, … is called the order of the principal maximum. The grating you 
will use has a small value of d so the right-hand side is large; since sin θn must be less than one, 
only the first few orders will be visible. 
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Figure 4 Proper motion of a star 
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The spectrometer is shown in figure 5. The collimator, which produces a beam of parallel light 
coming from the adjustable slit source, and the telescope can be rotated around the centre of the 
table. Vernier scales give accurate measurements of the angular position. 

• Place the grating over the centre of the 
table and perpendicular to the collimator 
axis. Clamp the table and the collimator 
firmly, ensuring that the telescope can 
swing freely on both sides of the straight-
through position.  

• In this position observe the direct 
image of the slit, and adjust the slit, 
collimator and telescope as needed. You want the slit to be as narrow as possible while still 
appearing uniformly bright, and to be vertical (the lines of the grating are vertical). The 
focusing should be as sharp as you can get it. A useful hint is to take the spectrometer carefully 
into the main lab and adjust the telescope by focusing on a distant object on the horizon. Then 
adjust the collimator to focus the image of the slit. Record the angle of the telescope in the 
straight-through position, and subsequently always record the angles of a diffraction maximum 
on both left and right sides. Not only does this give you two independent measurements of the 
angle, but also since the average of left and right readings should be the initial straight-through 
reading, it also gives you a valuable check against blunders and an estimate of your 
measurement accuracy.  

• At this point you should check that the grating is accurately perpendicular to the light falling 
on it from the collimator. Think of a way to do this.  

Observation of spectral lines 
• In order to calculate λ from measurements of the diffraction angle θ, we first need to know the 
grating line-spacing d. Calculate this from the number of lines per mm (or inch) which is 
engraved on the grating.  

• Using the gas discharge tubes provided, measure a selection of prominent spectral lines of 
sodium, mercury, cadmium and hydrogen. Observe first, second and (where possible) third 
orders of principal maxima. Use the following list of prominent lines to identify them, and then 
calculate their wavelengths.  
 Element Colour Intensity 
 Sodium  green/yellow weak 
  green/yellow weak 
  yellow very strong  
  yellow very strong 
 Mercury violet strong 
  turquoise weak 
  green very strong  
  yellow quite strong  
  yellow quite strong 
 Cadmium blue quite strong  
  blue strong 
  green strong 
  red quite strong 
 Hydrogen blue weak 
  deep red weak 

Figure 5 Grating spectrometer 
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• The two yellow lines of the sodium doublet near 589 nm, the famous ‘D-lines’ of sodium, 
should be well resolved if you have set up the instrument carefully. Be sure you identify the 
lines correctly, using the diffraction equation to decide whether the longer or the shorter 
wavelength is diffracted through the greater angle. 

• Finally, look up the true values of the wavelengths of all the lines, and compare your results 
with these. 

Chromatic resolution [This section is optional; do it at the end if you have time] 
Diffraction theory shows that the angular separation of two nearby wavelengths is increased by 
(i) going to higher orders, as we have seen above, and (ii) increasing the total number of lines on 
the grating which contribute to the diffraction. If the Rayleigh criterion for angular resolution 
(see part A) is used, then it can be shown that the minimum wavelength difference that can be 
resolved is 

where N is the total number of lines and n the order. It is convenient to define the resolving 
power as the ratio λ /δλ between the wavelength itself and the smallest difference that can be 
measured at that wavelength. The larger the resolving power the better the chromatic resolution. 
From the expression above, the resolving power equals N n. 

• The sodium D-lines should be well resolved when you use the full width of the grating. A 
simple way to vary the illuminated width is to clamp vernier callipers just in front of the grating 
and adjust the opening of the jaws. Find the narrowest opening that still allows you to resolve 
the D-lines with confidence. Evaluate the quantity N n and compare with the value of λ /δλ. 
Repeat this several times for both orders. Do the experimental and the theoretical estimates of 
resolving power agree? Remember that the Rayleigh criterion is somewhat arbitrary.  

[End of optional section]  

!" = " Nn
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Doppler shift of spectral lines 
A change in wavelength occurs when a source of light moves towards or away from an observer. 
The change, Δλ = λ' – λ, where λ is the normal wavelength and λ' is the changed wavelength, is 
proportional to the relative velocity v: 

where c is the velocity of light. This is the Doppler shift. When source and 
observer are moving apart, v is positive, λ' is larger than λ and the light 
becomes redder. If they are approaching, v is negative and the light 
becomes bluer. The effect is very small but can be detected in the light from 
some stars and galaxies.  

• Figure 6 is a photograph of part of the spectrum of iron, taken by focusing 
diffracted light from iron vapour onto a long strip of film. The principle 
maxima appear as bright lines, some of which are labelled A–H. Their 
wavelengths are well known, and are tabulated below. Superimposed across 
the centre of the spectrum of iron is that of a star, taken by directing the 
light from a telescope onto a spectrometer fitted with a camera. Some faint 
dark bands labelled a–f can be discerned; these are known to be lines of the 
elements hydrogen and calcium, whose wavelengths are also well known 
and tabulated below. However, because the star is moving relative to the 
Earth its light is Doppler shifted, so these stellar spectral lines do not appear 
at exactly the wavelengths measured in the laboratory. From the 
information below, and careful measurements of the positions of the stellar 
lines relative to the iron lines, find the apparent wavelengths of the lines a-f, 
deduce whether the star is moving towards or away from us, and estimate 
the relative velocity. 

  Stellar lines:  Iron lines: 

  Line λ  (nm) Source Line λ  (nm) 

  a’ 388.90 hydrogen A 388.71 
  b’ 393.38 calcium B 395.67 
  c’ 396.86 calcium C 400.52 
  d’ 397.01 hydrogen D 407.17 
  e’ 410.17 hydrogen E 413.21 
  f’ 434.05 hydrogen F 420.20 
    G 426.05 
    H 440.48 

The lines a’-f’ given in the table above are unshifted and correspond to the 
shifted lines a-f in figure 6. 

 

 

 

Figure 6 Doppler-shifted spectrum 
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Part C: The expansion of the Universe 

Introduction 
In this part you will use the ideas and methods of parts A and B to measure the distances and the 
velocities of five distant galaxies, from photographs and spectra. A plot of distance versus 
velocity should then show that the two are related, a finding first made by the American 
astronomer Hubble in 1929. Hubble found that the spectra of many distant galaxies are shifted 
towards the red; he interpreted this as a Doppler shift and showed that the apparent velocity of 
recession increased linearly with the distance of the galaxy. Although there continue to be 
arguments about the value of the constant of proportionality (Hubble’s constant) in this linear 
law, and even about the interpretation of the red shift as due to motion, there is no doubt about 
the observations. The quality of the material you will have to work with is considerably better 
than that available to Hubble. 

The distance of the galaxies 
Finding astronomical distances is difficult. This is the method we will use for these distant 
galaxies. Galaxies tend to form large clusters containing perhaps hundreds of members, some 
big and some small. It is found that in nearby clusters whose distances can be measured 
reasonably accurately by other means, the brightest elliptical galaxy is usually about 30,000 
parsecs in diameter. (Galaxies are broadly classified as spiral or elliptical — the latter are often 
sufficiently close to spherical that it makes sense to refer to a single value for the diameter.) If 
we assume that this is true for all galactic clusters, then we can estimate the distance of a far-off 
cluster by measuring the apparent angular diameter θ of its brightest elliptical member and 
inferring the distance D from the expression (figure 7): D = 30,000/θ parsecs, where θ must be 
in radians. 

- The scale of the photographs is given by the barred line, which is 150 arcseconds long. Measure 
the diameter of each galaxy’s image, taking the mean of several measurements in different 
directions, and deduce the angular diameter of the galaxy in the sky. Convert this from arcseconds 
to radians, and deduce the distance D to the cluster. 

The velocity of the galaxies 
The spectrum of each of the five galaxies shows two strong dark lines, prominent in elliptical 
galaxies and due to calcium. These, usually called the calcium H and K lines, are the lines b and 
c in the stellar spectrum you measured in part B, where their wavelengths are given. The arrows 
on the photographs show the extent to which these lines have been shifted towards the red. The 
comparison spectra above and below the galactic spectra are of helium. The lines marked a–g in 
these spectra have the following wavelengths: 

 • By measurements similar to those in part B, find the redshift Δλ /λ of the calcium lines. 
Hence calculate the recessional velocity of the galaxy. 

 

Figure 7 Estimating distances of galaxies 
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Hubbleʼs law 
• Plot a graph of recessional velocity v versus distance D for the five galaxies, and hence 
determine a value for H in the expression for Hubble’s law: 

Give your value for H, which is Hubble’s constant, in its usual units of km s–1 Mpc–1. 

• Use your value of H to estimate the age of the Universe. 

Line λ  (nm) 

 a 388.87 
 b 396.47 
 c 402.62 
 d 414.38 
 e 447.15 
 f 471.31 
 g 501.57 

v = HD


