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Laboratory Exercise 6 – MEASUREMENTS OF WAVE VELOCITY 

Introduction 
The theme of these experiments is to measure the speed of sound in different media: in air (6A), 
and in a copper rod (6C) and to investigate uses of wave phenomena in measurement techniques 
(6B). These are actually three separate exercises, each of which illustrates the use of the 
oscilloscope to display rapidly changing electrical signals.  

Each part can be completed in a single laboratory afternoon if you are fairly efficient, using the 
built-in measurement capabilities of the ’scopes. These are precision measurements and are 
capable of considerable accuracy, so in each case we want you to compare your results with 
those found by experienced investigators and given in textbooks. 

General principles 
No detailed understanding of wave motion is needed to carry out this exercise. We simply use 
the relation wave velocity = frequency ×  wavelength, v = f λ, since in each part we measure 
the frequency and wavelength, and calculate the velocity. This is the usual way of finding wave 
velocities since it is extremely inconvenient to measure the time a wave takes to travel between 
a source and a receiver a long distance apart.  

We also mention a relation that you will have to take on trust, namely vs = √(K /ρ); here vs is the 
velocity of a sound wave (a compression or longitudinal wave, with to-and-fro motion of the 
molecules), ρ is the density of the solid, liquid or gas, and K is an elastic modulus, a quantity 
that measures the pressure needed to compress or deform the material by a given amount. There 
are different moduli depending on the material and how it deforms — you have probably met 
Young’s modulus which measures the pressure needed to squeeze a solid in one direction. The 
relation enables the elastic modulus to be found from a measurement of sound velocity, and vice 
versa. Other types of waves (transverse waves involving side-to-side motion, as in a violin 
string) can also travel through solids, and for these there are similar but slightly more 
complicated relations between velocity and elastic modulus, which are mentioned and used in 
exercise 6C. 
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Exercise 6A: Sound waves in air 
In this experiment you use several different methods to measure the wavelength of high 
frequency waves travelling through air. The sound waves are produced in a small transmitter 
driven by electrical signals from a sine wave oscillator, and are detected by a receiver which is a 
small microphone, similar to the transmitter, whose electrical output is displayed on the 
oscilloscope. Transmitter and receiver are placed facing each other on a graduated slide. Their 
response is sharpest near a frequency of 40 kHz, so your measurements relate to this frequency.  

Frequency response 
• Set the transmitter and receiver facing each other 
about 30 cm apart (figure 1). Vary the oscillator 
frequency and observe the response on the oscilloscope; 
there is a narrow band of frequencies for efficient 
reception. Set the oscillator to maximise the amplitude, 
measure the frequency with a laboratory frequency 
meter, and check it during the course of the experiment. 

Direct measurement of wavelength 
• Move the transmitter slowly towards the receiver. As you do so the relative phase of the 
transmitted and received signals changes, the wave trains shifting by one whole wavelength 
when you have moved the transmitter exactly this amount. There are millimetre scales on the 
shoeplates; measure the distance d that corresponds to a large number, N, of wavelengths, 
deduce the wavelength λ at this frequency, and so calculate the sound velocity vs.  

• Now recall the expression vs = √(K /ρ). In a gas the appropriate modulus K is the pressure, and 
in an ideal gas pressure divided by density is proportional to the absolute temperature T. So 
(show this for yourself) vs(T °C) = vs(0 °C) √(1 + (T °C)/273). Find the temperature of the air in 
the lab, and so reduce your value for the speed of sound to the value at 0 °C. Compare this with 
tabulated information (e.g. Kaye and Laby). Estimate the errors in your measurement. 

Standing waves 
• Sound waves can bounce back and forth between the transmitter and receiver clamps. If the 
separation between transmitter and receiver is a whole number of half wavelengths, the there-
and-back distance for one reflection is twice this, which is an exact whole number of 
wavelengths, and a standing wave pattern will be formed with nodes where the opposing 
waves cancel and antinodes where they reinforce. As you move the transmitter you can see the 
received signal increase in amplitude every half-wavelength as the standing wave pattern is 
formed. (In between there is a rather confusing variation of response because the travelling 
waves partially interfere). If this is difficult to observe try putting the aluminium discs on the 
receiver and transmitter, clamping them carefully so that the discs are flush with the fronts of the 
transmitter and receiver, and parallel to one another. 

• Measure the change in distance corresponding to passing through a large number of nodes, 
deduce the wavelength, and compare with your earlier value. 

• The change from one standing wave pattern to the next is accompanied by a change in the 
phase of the received and transmitted signals which you can see on the two-beam display of the 
’scope. This phase change becomes more noticeable if you switch to XY display. In normal 
display mode the horizontal axis is controlled by a timebase circuit which drives the display in 
the horizontal (X) direction at a constant rate, adjustable by a front-panel knob at the right. 

 

Figure 1 Basic set-up 
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Selection of the XY display mode turns the timebase off and allows the display to be driven 
horizontally by one of the input voltage signals. Do this, and describe what you see. 

Interferometry 
• Place the perforated metal plates on the slide at right 
angles to the sound wave (figure 2). They let some of the 
wave through while reflecting part of it. Between these 
semi-reflecting plates the sound wave bounces back and 
forth, some of its energy escaping towards the receiver. 
There will therefore be a standing wave pattern between 
the plates when their separation is an integer number of 
half wavelengths, as we have seen. At these spacings the 
amplitude of the signal displayed on the ’scope will 
increase to a maximum, with weak minima at 
intermediate spacings.  

• Put the scope back into normal (not XY) two-beam operation, and move the perforated plates 
so as to measure the spacings of these maxima. This gives yet a third way of measuring the 
wavelength, so deduce it. 

The technique of using semi-reflecting plates to form interference patterns of standing waves 
was developed by Fabry and Perot for use in optics, where it is widely used in spectrometers to 
measure, or select, different wavelengths. What you 
have here is a sonic analogue of the Fabry–Perot 
interferometer. 

Phase-sensitive sonar 
• Finally, take the transmitter off the slide and place 
it to one side with its ultrasonic waves directed at a 
perforated plate set at 45° (figure 3) so as to reflect 
the sound to the receiver. Viewing both traces on the 
’scope, you will see that their relative phase changes 
as the plate is moved slightly towards or away from 
the receiver. A movement of one wavelength causes 
a complete phase shift of the same amount. The effect is seen more clearly if you switch to XY 
display, where the pattern is sensitive to quite small movements of the perforated plate.  

• To increase the sensitivity still further, switch the oscillator from sine wave to square wave 
operation. You will see, on dual-trace display, that neither transmitter nor receiver can respond 
to the rapid changes of the ‘square’ wave so a sine wave is still displayed. Switch back to XY 
and observe the effect of combining the square wave with the sine wave in X vs. Y. You have an 
oblong display whose height (or width — it depends which way round your input channels are 
connected) is extremely sensitive to movement of the plate. Blow gently on it and you will 
agree!  

• Set your pattern to fill most of the screen, estimate how large a change in the oblong shape you 
can detect (perhaps a millimetre or so?), and deduce what movement of the plate this 
corresponds to. You have built a sensitive device for remote measurement of small 
displacements — a phase-sensitive sonar. 
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Excerise 6B: OPTICAL MEASUREMENTS 

Introduction 
Light is a form of wave motion, the colour being determined by the wavelength — about 400 
nanometres for blue light and 700 nanometres for red (a nanometre, nm, is 10–9 metre). Suppose 
two light waves travelling in the same direction are brought together. If the crests and troughs of 
one coincide with the crests and troughs of the other the waves reinforce each other, whereas if 
the crests of one fall exactly on the troughs of the other the waves cancel one another out. The 
first case, leading to enhanced brightness, is called constructive interference, the second, 
destructive interference. If the two waves have exactly the same wavelength (therefore colour) 
and the same amplitude, the cancellation will be perfect yielding complete darkness. If white 
light is used cancellation can be perfect only for one wavelength.  

A common way of producing interference effects is to take a 
single light wave and split it in two, say by reflecting part of it 
from each of two surfaces a small distance apart. If the waves are 
recombined they will interfere — this is the origin of the colours 
of a soap bubble, as shown in figure 4. (You may have noticed 
that these colours, being due to the absence of light near a certain 
frequency, are different from the usual spectral colours of the 
rainbow which are due to the presence of particular frequencies.) 
The colour of the bubble can be used to calculate the thickness of 
the water film which, being typically much less than 10–6 m, is 
otherwise very difficult to measure. The measurement is easier if 
light of a single wavelength (that is, colour, hence monochromatic) is used because complete 
destructive interference (total darkness) can then occur.  

In this exercise you will observe optical interference of (nearly) monochromatic light, and use it 
to measure the thickness of an air gap between two glass surfaces, one of which, a simple 
convex optical lens, is curved. You can then calculate the curvature of the lens surface. 
Comparison with similar measurements made with a mechanical curvature gauge, or 
spherometer, should convince you that optical methods are much more precise than mechanical 
ones for measuring small distances. Many analytical and process control instruments utilise 
interference techniques; a simple example is given at the end of this exercise.  

A useful mathematical result: the sagitta rule 
Figure 5 shows an arc of a circle of radius R, its ends connected by a 
chord of length 2a. If we look at either of the two right-angled triangles,  

Since h is much less than R the term on the right is approximately 2Rh, 
leading to the approximation known as the sagitta rule:  

 
(so-called from a resemblance between the diagram and a bow and 
arrow, the Latin sagitta meaning arrow). It applies also to a sphere, with h being the distance 
between a tangent plane and a spherical surface such as that of a lens, and R being the radius of 
curvature of the surface. We shall use the sagitta rule in both the mechanical and the optical 
measurements of R. 
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Measurements: mechanical 
The spherometer (figure 6) is an instrument for measuring the curvature of a spherical surface 
such as that of the lens you are given. Its tripod feet are set around a circle of radius a, 
corresponding to the chord length in the sagitta rule. In use, its centre point is raised (or lowered) 
a distance h above or below the plane of the feet, allowing the radius of a convex (or concave) 
surface to be calculated using the rule. One turn of the screw corresponds to a fixed change in h, 
which for your instrument is 1.0 mm. The edge of the attached disc is divided into a scale of 100 
equal graduations, each corresponding to 0.01 mm. To obtain the correct measurement you will 
need to subtract your scale reading from 1.0 

• To use the spherometer, balance it on the convex 
lens with the point raised, screw the point down until 
the tripod feet are just free to move, and note the 
scale reading against the vertical bar. This may be 
positive or negative depending on the instrument you 
have, but we are interested in measuring the distance 
travelled obtained by subtracting this measured 
value from the measurement of a flat surface… 

• Now stand the spherometer on the accurately flat 
larger sheet of glass, lower the point until it is again 
just touching the surface, and note the scale reading again. The difference between the two 
readings is distance h. Repeat the measurement of h several times. 

• Find a by measuring the separation of the tripod feet which, by trigonometry, is equal to a √3. 
Check a by directly measuring the distance between any leg and the centre. Which of these 
measurements is more accurate, and why? 

• Use your values of a and h to deduce R. 

Your measurements of h will probably not agree to better than one scale division (0.01 mm), and 
anyway it is difficult to read the scale to better precision than this. So if h were, say, 0.25 mm, 
then your measurement would only be accurate to 
1 part in 25, that is 4%. Also, there is an 
uncertainty on your measurement of a. Use the 
propagation of errors formula to calculate the 
uncertainty on R given your estimates of the 
uncertainty of a and of h. Remember, the 
experimental error or the experimental 
uncertainty in R, σR, can be expressed as either a 
percentage, 100 × σR /R, or as an actual value, ± 
σR, using the symbol ± to indicate our uncertainty: 
R ± σR.  

Measurements: optical 
• Place the lens on the smaller flat sheet of glass underneath the inclined glass sheet in its 
holder, and put this on the stage of the travelling microscope. Turn on the yellow sodium lamp 
and shine the beam horizontally. The inclined glass sheet reflects some of the light down 
through the lens where part is reflected back from its bottom surface while the rest continues to 
the glass flat, is reflected, and retraces its path. The two returning light waves continue together 
back through the lens and up through the inclined sheet (figure 7).  

h

 

 

Figure 6 Spherometer 
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• Look directly downwards. Your eye brings the two light waves to a focus on your retina where 
they interfere. If your vision is reasonably good you should be able to see a number of tiny 
concentric dark circles centred on the point where the lens touches the glass flat; these circles 

are called Newton’s rings (although they were actually studied first by Hooke). At a radius a 
from the centre there will be a dark ring if at that radius the distance h between the lens and the 
flat is exactly right for destructive interference between the reflected waves. At larger and 
smaller radii there are bright rings where constructive interference occurs. The sagitta rule 
relates a and h to the radius of curvature R of the lens surface. We move from one dark ring to 
the next whenever h increases by half a wavelength of light, since the extra distance travelled by 
one wave is 2h, a whole wavelength. So starting with a dark ring at radius ao and separation ho, 
the sagitta rule gives for this and successive rings: 

In these expressions λ is the wavelength of sodium light, which you can take to be 589 nm. A 
plot of an

2 versus n should yield a straight-line graph whose slope is Rλ. Thus R can be found. 

• Now for the measurements. The rings are much more easily seen through the microscope, and 
you can use the graduated scale on the horizontal bar to measure the position of the cross-wires 
as you move them from ring to ring. This scale has a vernier attachment to increase the reading 
accuracy (if you are not familiar with vernier scales ask a demonstrator). Practice moving the 
microscope horizontally by unclamping it, moving it to about the right position, clamping it 
firmly to the screw-drive, and then using the screw to move the microscope in a slow and 
controlled way.  

• Set the cross-wire tangent to, say, the fifth dark ring to the left of the centre, and the same ring 
(n = 5) to the right, noting the scale readings at each position. Make sure that in going from left 
to right parts of the rings you pass through the centre of the rings. The difference between your 
readings is the diameter of the fifth ring. In a similar way measure the diameters of the 10th, 
15th, 20th, …, rings. You should be able to measure out to about n = 50, though it is difficult to 
avoid losing count. The best procedure is to take all the readings to one side first, then repeat on 
the other side of the centre. Be careful not to confuse millimetres and centimetres. 

• Use the propagation of errors formula to calculate the error on a2 from your measurement of a. 

• Plot your measurements as you go along, check that a straight line is a reasonable fit to your 
data, and find its gradient. Do not forget to plot the error bars! Does your line pass through 
the origin? Then use the computer to print a neat graph and to calculate the gradient, which 
should be close to your hand calculation. Deduce a value for R. The computer also calculates the 
error in the gradient. Use this to find the experimental error ±σR in your value of R. How does 
this compare with the error from the mechanical measurement? 

A practical application 
Suppose the gap between the lens and the flat plate were filled with something other than air — 
a liquid, say, with refractive index µ. The refractive index measures how much more slowly 
light travels in a medium than in a vacuum (or in air, whose refractive index can for most 
practical purposes be taken equal to unity). As the refractive index increases so the velocity, and 
the wavelength, of the light decreases in inverse proportion: 
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So the condition for destructive interference becomes: 

and if you repeat the experiment with a liquid instead of an air gap the slope of your graph will 
be µ times smaller.  

• Try it. Place a small drop of distilled water from the squeeze bottle on the flat plate, lay the 
lens on top, repeat your measurements and, using the value of R you have already found deduce 
the refractive index of water. Plot your data on the same graph as before.  

This is the basis of some commercial instruments for measuring refractive index. The reason for 
using distilled water, incidentally, is to keep mineral deposits off the optical glass — the 
refractive index, even of London tap water, is scarcely different! 

A question of physics 
Notice that the centre of the pattern is dark. You might expect that where the two reflecting 
surfaces are so close together that the difference in distance travelled by the two waves (the 
optical path length) is negligibly small, they would interfere constructively leading to 
enhanced, not diminished, brightness. On the other hand, you might argue that since at the centre 
there is no gap at all, but a continuous light path in glass, there can be no reflection from either 
surface, hence no reflected light, hence darkness! Which, if either, of these two conflicting 
arguments is right? You might care to ask your lab demonstrator. 
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 Exercise 6C: The vibrations of a copper rod 
Gases and liquids respond to pressure in a simple way. Their change of density depends only on 
the magnitude of the compressive force, not on its direction. That’s why bubbles in water are 
spherical, not flattened. The response is described by a single elastic modulus, the bulk 
modulus K, and there is only one sound velocity, vs = √(K /ρ). 

Solids are more complicated. Pull a rubber band and it becomes thinner as well as longer. The 
molecules respond to the direction as well as the magnitude of the force. A solid requires at least 
two elastic moduli, K which measures the stress needed to change its volume, and the shear 
modulus (or rigidity modulus) G which measures the stress that changes its shape. The word 
‘shear’ tells us that molecules are sliding past each other, a motion strongly resisted in solids but 
not in fluids (which fill any shape of container). As it is difficult to compress a solid object 
without changing its shape, a more useful modulus than K is Young’s modulus E which 
measures the stress that compresses a solid in one direction while allowing it to change shape as 
it pleases in other directions. K, G and E are not independent — the relation between them is: 

This extra complexity allows solids to transmit several types of waves. For example, seismic 
waves in the Earth travel at different speeds depending on whether compression or shear is the 
dominant motion. In this exercise you will use thin copper rods to study the vibrations which 
they support. These vibrations would travel as waves along very long bars, but in these short 
bars the waves reflect back-and-forth from each end, setting up standing wave patterns when 
their wavelength (and hence frequency) is just right for reinforcement to occur. An electrical 
method is used to make the bar vibrate in the desired way, and the movement of the bar is also 
measured electrically. Even large forces produce rather small deformations of the rod, and the 
vibration amplitude will be small unless the frequency of the driving force is exactly equal to 
one of the natural vibrational frequencies of the rod. This is an example of resonance, the 
familiar situation in which the stimulus is applied at the same time in every cycle, as when you 
push a child higher and higher on a swing. 

In this exercise you set up both torsional (twisting) and bending vibrations, as sketched in 
figure 8. Mathematical analysis shows that the speed at which torsional waves travel is 
determined solely by the shear modulus: v torsion = √(G /ρ). Standing waves are set up when a 
whole number, n, of half-wavelengths fit into the length l of the bar (the same criterion as for the 
fundamental frequency and harmonics of an organ pipe). This requirement and the relation 
v = f λ lead to the following expression for the resonant frequencies of torsional vibration: 

The analysis for bending waves is rather more 
complex. Their velocity is determined by 
Young’s modulus, and also depends on their 
wavelength. The final result is: 

where a is the radius of the cylindrical rod. To 
be quite exact for n = 1 the factor 2n + 1 (= 3) 
must be replaced by 3.011. 

 

Figure 8 Torsional and bending modes 
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1. Bending vibrations 
• Two copper rods are provided, one for bending and the 
other for torsional vibrations. Use the rod with circular 
coils wound near its end for the bending modes. Suspend it 
horizontally so that it can vibrate freely and connect one of 
the coils to the function generator via the black amplifier 
box.  This box is required because of the poor impedance 
matching between the 50Ω output of the function 
generator and the 3Ω impedance of the coil.  Arrange a permanent magnet to give a field which, 
by interaction with the current in the coil, will force the rod into bending vibrations (figure 9). 
Detect the vibrations by arranging a second magnet in a similar way near the other coil so as to 
induce a small voltage signal in that coil which, after amplification by the grey amplifier box, 
can be registered by the oscilloscope.  

• Check that the apparatus is set up correctly by switching off the oscillator and striking the bar 
gently in the middle, when the fundamental vibration (i.e. n = 1, figure 8) should be excited and 
you should see its oscillation on the ’scope. From the trace, roughly estimate the frequency. 

• Turn on the oscillator and look for the n = 1 resonance in this region, varying the oscillator 
frequency until a sharp maximum is obtained. Display both input and output signals on the 
’scope, making the final adjustment of frequency so as to make the output as large as possible. 
Estimate the phase relationship at resonance. The frequency may not be indicated reliably by the 
oscillator dial, so use the oscilloscopes.  

• Plot a suitable graph relating harmonic number n to frequency, measure the length and radius 
of the rod, and deduce a value for Young’s modulus E of copper. The density may be found in 
Kaye and Laby, which also lists currently-accepted values for elastic moduli. 

2. Torsional vibrations 
• Use the other rod to set up torsional vibrations. The rectangular coil wound at the end of this 
rod produces a magnetic field in a different direction from the previous circular coil, so by 
arranging the permanent magnets appropriately (perpendicular to the coil, with the two ends 
different by 90°) you can both induce and detect twisting motion.  

• Once again using the frequency generator set to generate a sine wave scan through and 
determine the resonant frequencies, and so deduce a value for the shear modulus G of copper. 
From your measurements of E and G, deduce a value for the bulk modulus K. 

Resonant vibrations in quartz 
Longitudinal sound waves, that is waves of compression running to-and-fro along the rod with 
velocity vs = √(E /ρ), are easy to produce mechanically. But there are some crystalline materials, 
for example quartz, in which these vibrations can be produced electrically. An applied voltage 
produces a small change in the crystal’s length (the piezo-electric effect), so an AC voltage 
causes a wave of expansion and contraction to run through the crystal. The resonant frequency 
depends on the size of the crystal; a thin slice of quartz, for example, has a resonant frequency of 
hundreds of kilohertz. Only a tiny input of electric power is needed to sustain these resonant 
oscillations, whose frequency is determined by the size of the crystal and is thus extremely 
stable. These crystal oscillators are at the heart of every digital watch and computer clock. 

• The speed of sound waves along such a quartz crystal is 5440 m/s and the density of quartz is 
2600 kg/m3. Calculate the value of Young’s modulus, and find the thickness of a slice of quartz 

 

Figure 9 Arrangement of magnets 
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whose fundamental resonant frequency is 1 MHz. Note that the requirement for resonance is the 
same as that for torsional vibrations. 


