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Laboratory Exercise 10 – DIGITAL and  
ANALOGUE ELECTRONICS 

In this exercise you will use electronic ‘chips’ to build some useful circuits. The first part 
illustrates the use of digital integrated circuits (ICs) with a counter and display, and the second 
extends this to making a rudimentary timer. The third part is a study of analogue operational 
amplifiers (‘op-amp’) ICs, while the last part unites the analogue and digital worlds by using an 
op-amp to build a simple digital-to-analogue converter.  

Part A: Counter, decoder, and LED display 

Introduction 

In this section you will build a circuit for counting and displaying signals, using digital 
integrated circuits (ICs, or ‘chips’). ‘Digital’ means that the signals have only two discrete 
levels, which may be called true or false, high or low, on or off. For consistency, we use binary 
digits 0 and 1 to indicate low and high, and represent them by voltages 0 V (‘close to zero’) and 
+5 V (‘about five volts’). These levels are separated by a clear margin, so they don’t have to be 
generated very precisely. They are called TTL signals (from Transistor–Transistor Logic). We 
will use so-called CMOS chips (Complementary Metal-Oxide-Silicon), which are made up of 
many transistors used as switches. These chips are common and inexpensive. Some are very 
simple, but others are extremely complex. Their operation is summarised in the CMOS Data 
Book, of which we have copies in the laboratory.  
The family of chips we will mainly use is the 4000 series, with numbers of the form 4XXX. They 
always need to be connected both to a power source, typically labelled VDD and between +3 to 
+15 V (we always use +5 V), and to earth (0 V), labelled VSS.  

CMOS devices are easily damaged by electrostatic charge, due to their very high input 
resistance. When not plugged into a circuit board they are normally stored on aluminium foil, 
conducting plastic or conducting foam. Do not rub them on man-made fabrics, and it is often a 
good idea to wear an earthing strap to avoid static discharge when handling them.  

So-called ‘pinout’ diagrams show where power, earth, and all logic signals must be connected. 
Note that the pin numbering, as viewed from above, always has pin 1 at bottom left and goes 
around the chip anti-clockwise. You can tell which end has pin 1 from a small dot or notch on 
the chip package. (Packages like this with two rows of pins are called dual in-line, or DIL.) The 
pinout diagram should indicate which pins are for input signals and which for outputs. If an 
input to a chip is not used, you must nearly always connect it to an appropriate level, either low 
or high, to be sure that the logic will work as planned — beware of any ‘floating’ connections. 

The equipment for this exercise consists of a test box with a breadboard on top and power 
supplies inside. It also has switches to give voltages corresponding to logic 1 when up and 
logic 0 when down, and light-emitting diodes which light up when a logic 1 (high) is applied. 

The top row of holes on the breadboard are all connected together, and so is the bottom row (see 
figure 4 in exercise 2). Normally, you should connect the top row of holes to the +5 V supply 
connector on the rear of the unit, and the bottom row of contacts to the earth connector. This 
allows fairly short, neat connections to any part of the breadboard.  

Although very simple logic can be used to construct complex circuits, it is better to use ready-
made chips that integrate entire tasks. This makes for easier design and construction of practical, 
reliable equipment. In this part we will count and display electronic pulses using counter, 
decoder, and display chips. We will start at the display end and work backwards. 
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Binary-coded decimal (BCD) representation 
Digital logic is closely tied to the use of binary, or base 2, numbers. This is fine inside 
computers, but humans prefer decimal notation. One common way to do this is by using binary-
coded decimal (BCD), which uses four binary bits for each decimal digit. In principle, four bits 
can count from 0 to 15 (i.e. 16 combinations) but in BCD the four bits, representing 1, 2, 4, and 
8, only count from 0 to 9 — the combinations adding up to more than 9 are simply not used. (If 
you are unfamiliar with binary notation or do not understand BCD then ask a demonstrator.) 

7-segment LED display 
Light-emitting diodes (LEDs) behave like ordinary p–n diodes. The direction of current flow is 
indicated by the diode symbol. The forward current through the diode must be limited by a 
series resistor. The current allowed varies with the size of the diode, but a typical value is ~10–
15 mA. Thus for a +5 V supply a typical resistor would be ~330–500 Ω. (For rough calculations 
like this you can neglect the small resistance of the conducting diode.) LEDs are commonly 
available in red, yellow, green and infrared (used for remote controls and fibre optics). Blue 
LEDs are rarer and dearer.  

 

Seven-segment displays for displaying numbers are very 
common. Each digit is made up of an array of seven LEDs 
in the form of strips (see figure 1), with each strip denoted 
by a letter between a and g. This arrangement also allows a 
few letters to be displayed, but this has problems since it 
confuses characters such as b and 6, or D and 0 and O.)  

Each of the LEDs must be supplied from a voltage source 
via a series resistor. The number of connections needed is 
minimised by having a common cathode connection to 
earth for all the diodes. Another simplification is to use a 
‘resistor pack’ containing eight resistors in a DIL package 
similar to an IC. The resistors are connected between 
corresponding pins on opposite sides of the package. 

➢ Start to wire up the circuit shown in figure 2. Plug chips into the breadboard with their pins 
on either side of the central gap. Put the display at the right-hand end of the breadboard, and the 
resistor pack (150 Ω) next to it. Leave room at the left-hand end for the decoder/driver and 
counter chips, which each have 16 pins. Connect the common cathode to earth — two pins are 
provided but only one of them has to be connected. Ignore the decimal point (d.p.). 

4511 Decoder/driver 
This is a fairly complex chip; its pinout is given in figure 3. First, it latches (i.e. stores) binary-
coded decimal (BCD) input data, so that the display remains lit even while the inputs (labelled 
A, B, C, D) are changing. Next, the BCD (1, 2, 4, 8) data are decoded into separate signals for 
each of the seven segments of the display. Finally, the signals are amplified by drivers. These 
can sustain ≤ 25 mA each, which is ok since the LED display segments must be limited to 
20 mA. This would seem to imply resistors of at least 250 Ω, but in fact there is some resistance 
in the 4511 output driver, so that resistors of ≥ 150 Ω are acceptable. (A full specification for the 
4511 is available in the CMOS Data Book.) 

➢ Connect the 4511 to the display via the resistor pack. Take care that the output connections 
are not shorted to earth or each other. Connect VDD, 

! 

BL  and 

! 

LT  to +5 V, and VSS and LE to 
earth. 
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➢ Examine the behaviour of the 4511 using the test-box switches to supply the inputs A, B, C, 
D, with the least significant binary digit (A) on the right. Check the truth table (table 1) given 
below. (X means ‘don’t care’, in other words the signal can be either 0 or 1 without having any 
effect.) Since BCD goes only from 0 to 9, find out what happens if ‘invalid’ codes 10, 11, 12, 
13, 14, 15 are applied.  

➢ Be sure also to check the blanking (

! 

BL), lamp test (

! 

LT ), and latch enable (LE) features of 
the chip to understand what they do. Note that 

! 

BL  and 

! 

LT  are ‘active low’ (i.e. they cause 
things to happen when they are at 0 V, not +5 V), while LE is ‘active high’. 

4518 BCD counter 
We will count so-called ‘clock’ pulses using half of a 4518 dual decimal counter. (We ignore the 
other counter for now.) This works by counting in binary, but some extra logic causes it to reset 
when it has counted to 10 so that we get BCD. Its pinout is given in figure 4, and full details are 
given in the CMOS Data Book. (In the book, A is called Q1, B is Q2, etc.) The counter 
increments either on positive-going edges of the Clock (Ck) input or negative-going edges of the 
Enable (En) input, and is reset by the Reset (Re) input. This is summarised in table 2. 
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Table 1 Truth table for 4511 Decoder/Driver 

Inputs Outputs 
LE 

! 

BL  

! 

LT  D C B A a b c d e f g Display 
X X 0 X X X X 1 1 1 1 1 1 1 8 
X 0 1 X X X X 0 0 0 0 0 0 0  
0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 
0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 
0 1 1 0 0 1 0 1 1 0 1 1 0 1 2 
0 1 1 0 0 1 1 1 1 1 1 0 0 1 3 
0 1 1 0 1 0 0 0 1 1 0 0 1 1 4 
0 1 1 0 1 0 1 1 0 1 1 0 1 1 5 
0 1 1 0 1 1 0 0 0 1 1 1 1 1 6 
0 1 1 0 1 1 1 1 1 1 0 0 0 0 7 
0 1 1 1 0 0 0 1 1 1 1 1 1 1 8 
0 1 1 1 0 0 1 1 1 1 0 0 1 1 9 
0 1 1 1 0 1 0 0 0 0 0 0 0 0  
0 1 1 1 0 1 1 0 0 0 0 0 0 0  
0 1 1 1 1 0 0 0 0 0 0 0 0 0  
0 1 1 1 1 0 1 0 0 0 0 0 0 0  
0 1 1 1 1 1 0 0 0 0 0 0 0 0  
0 1 1 1 1 1 1 0 0 0 0 0 0 0  
1 1 1 X X X X         

Table 2 4518 BCD counter actions 

Clock Enable Reset Action 
 1 0 Increment counter 

0  0 Increment counter 
 X 0 No change 

X  0 No change 
 0 0 No change 

1  0 No change 
X X 1 A = B = C = D = 0 

➢ Connect earth, then connect the A1, B1, C1, D1 outputs of the 4518 to the corresponding 
inputs of the 4511, and then connect +5 V. Connect En1 to one of the test-box switches, set to 1, 
and Re1 to another switch, set to 0.  

➢ Test the counter by using a breadboard switch, connected to Ck1, as a source of input pulses. 
Check the operation of Enable and Reset. Then speed it up by changing the input to use an 
oscillator at a rate of less than 10 Hz. (If your oscillator will not go to a low enough frequency, 
you can use the other half of the dual counter, Counter 2, to divide the pulse rate by 10. Connect 
the output D2 of Counter 2 to En1 of Counter 1, and earth the Ck1 input. The output D2 goes 
from 1 to 0 whenever 10 pulses are counted, and this increments the second counter.)  

DO NOT DISMANTLE YOUR CIRCUIT — IT IS NEEDED FOR PART B 
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Part B: A seconds timer 

Introduction 
In this section you will study the 4018 divide-by-N counter chip, which has facilities for 
dividing the number of input pulses by a programmable factor ranging between two and ten. 
You will then use it, together with a circuit to rectify a 50 Hz sine-wave voltage derived from 
mains electricity, to turn your counter into one that counts seconds.  

4018 Divide-by-N counter 

This is a 5-stage counter with facilities for dividing the input by any factor between two and ten. 
It is made more complex by having a ‘preset’ facility, to begin counting at any 5-bit (i.e. ≤32) 
binary number as well as zero. A pinout diagram and information on its division options are in 
figure 5, while a diagram showing how the logic works is given in the CMOS Data Book.  

Figure 5 Pinout and division options for 4018 divide-by-N chip 

The various divide options are selected by connecting different 

! 

Q  outputs back to the Data 
input. For example, 

! 

Q5  selects division by 10. In each case, the divided-down output appears on 
the 

! 

Q  pin that has been fed back to the input. For example, to see the input pulse train divided 
by 10 you use the 

! 

Q5  output. Note that division by even factors simply requires a connection, 
while for odd factors two outputs must go through an additional AND gate, e.g. 4081. (For odd-
factor output, look at the higher-numbered 

! 

Q  pin.) Examples are shown in figure 5. 

For normal operation the Preset Enable (PE) is held low. To start counting at a non-zero value, 
Preset Enable is set high and the desired binary number is put onto the five Jam (J) inputs. We 
will not test this facility. 

➢ Connect up the 4018 to the 4518 counter and LED display from part A. On the 4018, Preset 
Enable should be earthed, and the Jam inputs can be left unconnected. The TTL output of the 
signal generator should be connected to the Clock input. Reset (Re) can be connected to a 
switch, normally low, to allow the chip to be cleared. The output being used should be 
connected to the 4518 counter. However, because the outputs are inverted we’d like the 4518 to 
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increment on negative-going pulses. To do this, connect the 4018’s output to the Enable input of 
the 4518, and connect the Clock input of the 4518 to earth (see table 2). 

➢ Test the chip dividing by an even factor. To do this, display the pulses going in and coming 
out on a scope, and also count the outputs using the counter and LED display. Note that the 
outputs are inverted. When you have this working, divide by an odd factor as well. 

Rectification of AC and conversion to TTL pulses 

A half-wave rectifier using the 9 V AC supply is shown at the left of figure 6. Be sure to use the 
AC outputs of the supply and not the earth output. This rectifier only lets through the positive 
half of the sine-wave mains cycle, since the diode chops off the negative half. The symbol 
shown in the middle is a Zener diode, a device that does not allow the voltage across its 
terminals to exceed a given value. We use a Zener diode here to limit the voltage to a little under 
+5 V, 4.7 V to be precise. This should give us square-ish 50 Hz pulses that can drive TTL logic, 
since the ‘low’ should be close enough to 0 V. The circuit must also include a resistor of ~100 Ω 
to limit the current through the Zener diode when it starts to conduct. We finally add a simple 
TTL circuit to clean up the pulses; almost anything would do but a very simple choice is a 7404 
inverter since it only needs one input to produce an output. Use pin 1 as input, pin 2 as output, 
connect +5 V to pin 14, and earth pin 7. The TTL input and output need load resistors of ~1 kΩ.  

➢ Build this circuit and examine the waveform produced on the scope. Sketch both the 
original and the cleaned-up pulses. These 50 Hz pulses will form the basis of the seconds timer 
in the next section. 

Figure 6 AC to TTL converter, including ‘clean-up’ circuit 

Seconds timer 

The source of the timing information is 50 Hz AC, converted to TTL as above. The pulse rate 
must then be reduced by a factor of 50, using two 4018s to divide first by 10 and then by 5 to 
give 1 Hz. This can then be fed to half of the 4518 dual decade counter, which will drive the 
seconds display. A block diagram of the entire system is shown in figure 7. For a ten-second 
timer you do not need any of the circuits along the right-hand side of the diagram; these are used 
for the optional 100-second timer extension that follows. 

➢ Build and test the ten-second timer circuit. 

If you are feeling ambitious and have some time, this can be extended into a two-digit 100-
second timer. This requires the use of two LED displays and 4511 decoder/drivers, as in 
figure 7. Production of the 1 Hz signal is just as before. It is fed to half of the 4518 dual decade 
counter, which drives the seconds digit. In order to get the tens-of-seconds digit you can also use 
this half of the 4518 to divide the rate by 10, as described at the end of part A. Use the other half 
of the 4518 to drive the tens-of-seconds display. Use a common reset signal for both digits. 

➢ Optional (for extra credit): Build and test this circuit. 
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Figure 7 Block diagram of seconds timer. The chips along the right-hand side are only  
needed for the optional 100-second timer — omit them for a ten-second timer. 

Part C: Operational amplifiers 

Introduction 
The ideal operational amplifier, or op-amp, is a high-gain differential-input amplifier denoted by 
the triangular symbol shown in figure 8. It has two inputs, called inverting (–) and non-inverting 
(+), and requires both positive and negative voltage supplies but no explicit earth. The op-amp 
amplifies the voltage difference between the two inputs, so that the output voltage is  

! 

vout = Ao v+ " v"( )  

where Ao is called the open-loop, or open-circuit, gain. For a good op-amp Ao is typically of the 
order of a million at low frequencies, so that even a voltage difference of a few microvolts will 
give an appreciable output. (We use lower-case letters like v and i for voltages and currents that 
can change with time, in contrast to steady DC ones which would be called V and I.) 

 

In reality it is impractical to use the amplifier in this way, since most of the time the output will 
simply saturate to nearly the level of the positive or negative power supply because the input 
signal is too large. It is almost always necessary to use negative feedback, which means that the 
output is connected back to the inverting input. This reduces the gain to a reasonable level.  

In addition, an ideal op-amp has a very high input resistance (ideally infinite, typically at least of 
the order of megohms) and a low output resistance (ideally zero, typically of the order of a 
hundred ohms). Typical op-amp limitations are that the gain decreases at high frequencies, and 
the response to very rapidly-changing inputs is not instantaneous. 
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Figure 8 Operational amplifier, and pinout of 741 and 081



Laboratory exercise 10 10–8 

+vin vout

RfRi

Figure 9 Inverting amplifier

When using an op-amp with feedback, we can get quite far in understanding what happens 
simply by applying two ‘golden rules’: 
• The output attempts to do whatever is necessary to make the voltage difference between the 

inputs zero. 
• The inputs draw essentially no current. 
In this part we will use two common and inexpensive op-amps, the 741 and the 081. Their 
pinout is shown in figure 8. Pins 1 and 5, offset null, are used to fine-tune the output to zero 
when the two inputs are equal. We can ignore them. 

Inverting amplifier 
This simple configuration is shown in figure 9. It uses an input resistor Ri and a feedback 
resistor Rf. Build the circuit step-by-step as follows.  

➢ First, place a 741 across the gap on the breadboard, and connect pin 7 to the +12 V and pin 4 
to the –12 V power terminals on the back of the test box. Connect the bottom horizontal row of 
breadboard connectors to the earth terminal of the power supply.  

➢ Switch power on and use a multimeter to check the supply voltages, connecting one meter 
lead to earth. Also measure the open-circuit output voltage. 

 

➢ Switch power off and connect the two resistors. For Rf use 100 kΩ connected between pins 6 
and 2, and for Ri use 10 kΩ connected between pin 2 and a free breadboard connection.  

➢ Connect one of the oscillator outputs to Ri and the other to earth. Connect channel 1 of the 
scope to the oscillator output, and connect channel 2 to the op-amp output (pin 6). This will 
allow a direct comparison of the op-amp’s input and output signals. At least one scope earth 
lead should be connected to the earth of the breadboard. (Note that even though the common 
earth is not shown in many op-amp diagrams, it will be present since the power supply is 
connected to it internally.) Using the scope, set up the oscillator for sine waves of about 1 kHz 
with an amplitude of roughly 100 mV.  

➢ Switch power on and measure the voltage gain obtained with your amplifier by comparing 
the amplitudes of the input and output signals on the scope. Compare the voltage gain with the 
predicted value, which is: 

! 

Voltage gain A " vout
v in

= #
Rf
Ri

 

This result, which depends only on the resistor 
values and not at all on the op-amp chip, follows 
from the ‘golden rules’. The first rule says that the 
inverting input is at ~0 V (it’s called a ‘virtual 
earth’), so the voltage across Rf is vout and the 
voltage across Ri is vin. The second rule says no 
current flows into the op-amp, so the currents in 
the two resistors must be equal. By Ohm’s Law 
we have:  

! 

I = vout Rf = "v in Ri  

which can be rearranged to get the equation above. The minus sign indicates the inversion of the 
signal, which you should see on the scope. This equation is valid over a wide range of resistor 
values and voltage levels. The resistor values must lie below the input resistance (~2 MΩ for the 
741 and ~1012 Ω for the 081) and above the output resistance (~75 Ω). The voltages will be 
above the op-amp’s ‘offset’ (~mV) but cannot exceed the voltage supply levels. 
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The other restriction on the validity of the simple gain equation is frequency. At DC and low 
frequencies there is no problem, but at high frequencies the gain decreases.  

➢ Measure the frequency response by increasing the sine-wave frequency of the oscillator, 
and measuring and plotting the gain at a number of points. The 741 should not show any 
decrease below about 10 kHz, so few points are needed below this value; concentrate your 
measurements where things start to change. Plot the results — a log scale is needed for the 
horizontal axis because of the wide frequency range, i.e. an axis labelled 1, 10, 100, 1000 etc.  

➢ Replace the 741 with an 081, and repeat the measurements and gain vs. frequency plot. 
Notice the improved high-frequency response. If the oscillator will not go to sufficiently high 
frequencies to see the fall-off, try increasing Rf or decreasing Ri, since (as discussed below) the 
fall-off occurs at lower frequencies when the gain is higher. 

There is always a trade-off between high-frequency response and gain. This is expressed by the 
gain–bandwidth product. The bandwidth is defined as the high-frequency cut-off, i.e. the 
frequency where the voltage gain has fallen to 

! 

1 2  of its maximum (usually mid-frequency) 
value. (

! 

1 2  in voltage is equivalent to half the output power). For a 741, the gain–bandwidth 
product is ~106, so for example if the gain is 100 then we’d expect a bandwidth of ~104 Hz. 

The decibel (dB) is often used in connection with amplifier gain because it is a logarithmic unit, 
and so can deal with widely-ranging values. Decibels are defined in terms of power ratios; the 
relative power gain in decibels is 

! 

dB =10 log10
Pout
Pin

 

In other words, a power ratio of 10 is +10 dB. An increase in power by a factor of 2 is 
10 log10 (2) = 3.01 dB, which is normally called 3 dB, while a decrease by a factor 2 is –3 dB. If 
we wish to use voltage rather than power, then 

! 

P =
V 2

R
so dB =10 log10

Pout
Pin

=10 log10
Vout
2 R

Vin
2 R

=10 log10
Vout
2

Vin
2 = 20 log10

Vout
Vin

 

Thus a voltage ratio of 2 means 20 log10 (2) = 6.02 dB, approximately +6 dB, while a ratio of 0.5 
means –6 dB. A ratio of 10 is +20 dB, while 0.1 is –20 dB.  

Hence, a gain decrease of –3 dB represents a decrease in power of a factor 2, and a decrease in 
voltage of a factor 

! 

1 2 .  

If we plot an amplifier’s gain in decibels vs. logarithm of the frequency, we have a log–log plot 
on which the drop-off in gain as a function of frequency should be roughly a straight line. The 
usual units for the slope of this line are dB per decade, i.e. the drop in gain (in decibels) for each 
factor of 10 increase in frequency. 

➢ Re-plot the frequency responses of the 741 and 081 in this way so that you can estimate the 
slopes at which they fall off. Estimate the bandwidth of each chip, and hence find their gain–
bandwidth products.  

Non-inverting amplifier 
This circuit is shown in figure 10. The input signal now goes to the non-inverting (+) input, with 
the feedback still connected to the inverting (–) input.  

➢ Wire up this circuit, again using 100 kΩ for Rf and 10 kΩ for Ri. 

➢ Measure the gain, and compare with the predicted voltage gain, which is: 
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! 

A =
vout
v in

=1+
Rf
Ri

 

This can again be deduced from the ‘golden rules’. 
Here, 

! 

v+ = v" = vin , and   v!  comes from what is 
effectively a voltage divider: 

! 

v" = vout
Ri

Ri + Rf
 

Simple substitution gives the gain of the amplifier. 
As with the inverting amplifier, we see that if the 
op-amp behaves ideally then the gain depends only 
on the external resistor values and not on the 
properties of the op-amp chip itself. The positive 
value means that there is no inversion, and the absolute value of the gain is higher than that of 
the inverting amplifier by 1. 

Part D: A simple digital-to-analogue converter 

Introduction 
The world around us is full of analogue signals. The availability of sophisticated but cheap 
digital logic and microprocessors means that it is also essential to have converters, both to 
digitise analogue signals for processing, and to turn digital results back into analogue. In this 
part you will first use an op-amp to sum input signals, and then study an electronically 
controlled switch. Finally, these will be put together to build a simple 4-bit digital-to-analogue 
converter (DAC) in order to understand some of the basic principles.  

The DAC constructed in this exercise works by summing currents, each of whose magnitude is 
proportional to the binary bit that it represents. The binary number is formed by using an 
electronically-controlled switch for each current, so that each binary bit can be turned on or off. 
To show this circuit in action, the binary number is taken from a counter so that it varies in a 
simple and easily understood manner. 

However, this DAC has very limited performance. For real applications demanding higher 
precision and speed it is far better to buy ready-made integrated converter chips than to try to 
design your own circuits. Very high-performance conversion is not easy, and prices go up 
rapidly as the number of bits and/or the speed increase. For example, the 16-bit DACs used to 
play CDs were initially state-of-the-art but have now become both more sophisticated and very 
cheap. 

Summing amplifier 
This circuit is a variation on the inverting amplifier of part B, and is shown in figure 11. Since 
no current flows into the op-amp input 
(golden rule), the currents in the two 
input resistors R1 and R2 are summed in 
the feedback loop resistor Rf: 

! 

i1 + i2 = if  
or in terms of voltage: 

! 

v1
R1

+
v2
R2

= "
vout
Rf

 

If     R1 = R2 = Rf , then 

! 

vout = " v1 + v2( ) . 
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This means that, apart from the sign, the output depends on the sum of the inputs. 

➢ Build the summing circuit, using ±12 V supplies for the op-amp. The choice of resistance is 
not critical — 10 kΩ is suitable for all three resistors.  

➢ Test the circuit by putting a sine wave signal into one of the inputs, and +5 V DC into the 
other input. Observe the results on the scope, noting the DC level as well as the sine wave. 

DO NOT DISMANTLE YOUR CIRCUIT — IT IS NEEDED LATER 

4066 CMOS switch 
An ideal switch has no resistance when closed and an infinite resistance when open. Mechanical 
switches come close, while electronic ones are further from ideal. However, the electronic 
versions allow much higher switching speeds. We will use a 14-pin CMOS chip which has four 
single-pole switches and four control inputs. The switches have a resistance of about 90 Ω when 
closed, and can switch 5 V signals at speeds up to 5 MHz. The pinout is given in figure 12. Note 
that there are two modes, analogue and digital. We will use digital mode. The rules for use are: 
• A switch is off when its control voltage 

equals the pin 7 voltage (i.e. 0 V). 

• A switch is on when its control voltage 
equals the pin 14 voltage (i.e. +5 V). 

• Signals passing through the switches 
must never go below the pin 7 voltage, 
nor above the pin 14 voltage. 

• The switches are bi-directional, and 
there is no difference between input 
and output terminals. In other words, 
the switches behave just like a 90 Ω 
resistor. 

➢ Check how the 4066 works by using a multimeter to measure the resistance of one of the 
switches (e.g. pins 1 and 2) when it is open and closed. Control the switch by using one of the 
breadboard’s switches to set the control voltage (e.g. on pin 13). Record the resistance with 
control settings of 0 V and +5 V. 

➢ Use the 4066 by putting two of its switches in series with R1 and R2 to control the inputs of 
the op-amp summing amplifier previously built. Connect +5 V to one side of one of the 
switches (e.g. pin 1), and R1 to the other side of the same switch (e.g. pin 2). Connect the TTL 
output of the signal generator to one side of another switch (e.g. pin 3), and R2 to the other side 
of the same switch (e.g. pin 4). Control the two switches by using two of the breadboard 
switches (connected to e.g. pins 13 and 5, respectively). Use the scope to see what happens: 
make drawings of the waveforms with one switch on, the other switch on, and both switches on. 
(Pay attention toDC levels as well as waveform.) Is this what you would expect? 

Digital-to-analogue converter 
The aim now is to build a 4-bit DAC, using the circuit shown in figure 13. An op-amp is used to 
sum four inputs, each representing one of the binary bits. The bits will be generated by +5 V 
signals, with the resulting currents weighted by using resistors in the ratio 8R : 4R : 2R : R. Each 
of the bits will be turned off or on by one of the CMOS switches of a 4066. This means that the 
output voltage of the op-amp will be: 
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Note that the output is inverted. This could be corrected by adding an inverting amplifier with 
unity gain after the summing amplifier. The most-significant bit, or MSB (i.e. the left-hand one 
in binary) comes from the smallest resistor, and the least-significant bit (i.e. the right-hand one 
in binary) from the largest resistor. 

In order to test the DAC, the circuit includes a 4518 counter, to count TTL pulses from the TTL 
output of the signal generator. This gives binary outputs that ramp up from zero to maximum 
value and then reset. 

Suitable resistor values are 3.3 kΩ, 6.8 kΩ, 15 kΩ and 27 kΩ, with a feedback resistor of 
3.3 kΩ. Note that the switches also add 90 Ω each, and that due to the imprecise resistor values 
(±5%) the binary ratios will only be approximate. It is possible to do much better by using 
higher-precision resistors.  

➢ Build this circuit. Note that the op-amp uses ±12 V supplies, while all the other chips use 
+5 V.  

➢ Examine and sketch the waveforms at the input and output of the circuit, using the scope, 
with the TTL input to the counter going at a rate such that everything can be seen clearly. If all 
is well, you should see a pattern like a staircase. Do you understand the number of steps? 

➢ Finally, measure the output voltage corresponding to each of the 10 possible binary (BCD) 
numbers. This is easier if you replace the TTL input to the counter by one of the breadboard 
switches. This allows you to clock up the counter one count at a time. Values can be read off the 
scope, with care, or you can use a DMM. Make a graph of the results, with counter values on 
the x-axis and the measured voltage on the y-axis. Is the plot linear? 

Practical DACs need more than four bits, and using this ‘binary ladder’ method would demand 
resistors with a huge range of values. (An 8-bit DAC would require the largest resistor value to 
be 256 times the smallest one.) Therefore, a slightly more complicated method called the ‘R–2R 
ladder’ is used; as the name implies, only two resistor values are needed. 


