
Introduction to C++ Week 6 Dr Alex Martin 2013 Slide 1

 Introduction to C++

Introduction to C++ Week 6 Dr Alex Martin 2013 Slide 2

 Numerical Integration Methods

The Trapezoidal Rule

If one has an arbitrary function f(x) to be integrated over the region [a,b] the
simplest estimator that one can use is a linear approximation of f(x) over the
integration region:

Introduction to C++ Week 6 Dr Alex Martin 2013 Slide 3

 Numerical Integration Methods

Evaluating the area of the resulting trapezoidal figure, which is clearly
half of that of a rectangle with sides h = b-a and f(a)+f(b) leads to the
trapezoidal rule:

Introduction to C++ Week 6 Dr Alex Martin 2013 Slide 4

 Numerical Integration Methods

The trapezoidal rule can be extended by subdividing the interval into
subintervals and summing the individual contributions.

Introduction to C++ Week 6 Dr Alex Martin 2013 Slide 5

 Numerical Integration Methods

The resulting extended trapezoidal rule takes the form:

Notice that , the number of subintervals (n-1) , is arbitrary, so one can
increase the precision of the approximation by simply increasing the value
of n.

Introduction to C++ Week 2 Dr Alex Martin 2013 Slide 6

 Numerical Integration Methods

The implementation of the extended trapezoidal rule as a C++ function
is fairly straightforward:

double trap(double a, double b, int n)
{
 double h = (b-a)/(n-1);
// Evaluate endpoints
 double value = 0.5*(f(a)+ f(b));
// Now the midpoints
 for(int k=2; k < n; k++){
 value+=f(a + h*(k-1));
 }
 value*=h;
 return value;
}

Here it is assumed that the (mathematical) function that we wish to
integrated is implemented as a C++ function called double f(double x).

The source code for this function numint.cpp and its associated header
file numint.h are available.

http://pprc.qmul.ac.uk/ugcourses/mcps/showcode.html?desc=Numerical+Integration+techniques&file=numint.cpp
http://pprc.qmul.ac.uk/ugcourses/mcps/showcode.html?desc=Numerical+Integration+techniques&file=numint.h

Introduction to C++ Week 2 Dr Alex Martin 2013 Slide 7

 Numerical Integration Methods

Simpson's Rule

The idea behind Simpson's rule is that we use a parabolic approximation (rather
than the linear approximation used in the trapezoidal method) to the function
over the integration region.

Consider a function f(x) integrated over the region [-h,h]

Introduction to C++ Week 2 Dr Alex Martin 2013 Slide 8

 Numerical Integration Methods

Introduction to C++ Week 2 Dr Alex Martin 2013 Slide 9

 Numerical Integration Methods

By subdividing an integral range into a series of such triplets of points and
summing the approximation to the sub-integrals one obtains Simpson's Rule:

The Simpson's Rule is fairly readily implemented in a similar way to
the extended trapezoidal rule.

In The Simpson's Rule n must be odd

Introduction to C++ Week 2 Dr Alex Martin 2013 Slide 10

 Finding roots of functions

Finding Roots of Functions

Consider a function such as:

f(x) = x3 - 2 x + 1

There are several numerical methods for finding the roots, xi,
where, f(x)=0.

Introduction to C++ Week 2 Dr Alex Martin 2013 Slide 11

 Finding roots of functions

Bisection Method

Let y1 = f(x1) and y2 = f(x2).

If y1.y2 < 0 , then there must be (at least one) zero of the function in
the region [x1,x2].

The midpoint of the interval is:

x3 = 0.5 * (x1 + x2)

And y3 = f(x3).

Then either y1.y3 < 0 or y2.y3 < 0 . In the first case the root lies in the
region [x1,x3] and in the second it lies in the region [x3,x2].

Introduction to C++ Week 2 Dr Alex Martin 2013 Slide 12

 Finding roots of functions

Once we have restricted the interval we can iterate by repeating the
process. The strategy is to keep bisecting the interval that contains the
zero.

The difficulty with the bisection method is in finding a initial region
[x1,x2] that contains one root (or an odd number of roots).

Introduction to C++ Week 2 Dr Alex Martin 2013 Slide 13

 Finding roots of functions

If one writes a C++ function:

 double f(double x);

to evaluate the mathematical function of interest, then a C++ implementation of the bisection
method could look like:

int Bisect(double x1,double x2, double precision,double& root)
{
 if(f(x1)*f(x2) > 0){
// No apparent roots in this region
 root = 0;
 return 0;
 } else {
// Bisect the interval
 double x = 0.5*(x1+x2);
// Test for convergence
 if(fabs(f(x)) < precision){
 root = x;
 return 1;
 } else {
// Use the Bisect method on one of the subintervals
 if(f(x1)*f(x) < 0){
 return Bisect(x1,x,precision,root);
 } else {
 return Bisect(x,x2,precision,root);
 }
 }
 }
}

Introduction to C++ Week 2 Dr Alex Martin 2013 Slide 14

 Finding roots of functions

Notice that in this case an initial range [x1,x2] needs to be input, and a poor
choice can result in failure indicated by a return value of 0. Successive
bisections are carried out by recursively calling the Bisect function itself
after deciding in which of the two sub-ranges the root lies.

Introduction to C++ Week 2 Dr Alex Martin 2013 Slide 15

 Finding roots of functions

The Secant Method

Let y1 = f(x1) and y2 = f(x2) .

Construct a straight line through the points (x1,y1) and (x2,y2).
From similar triangles we have:

(x3 - x1) / (0 - y1) = (x2 - x1) / (y2 - y1)

Its intersection with the x-axis is therefore:

x3 = x1 - y1 (x2 - x1) / (y2 - y1)

Introduction to C++ Week 2 Dr Alex Martin 2013 Slide 16

 Finding roots of functions

If one sets:

x1 = x2

x2 = x3

Then after several iterations we will, in most cases, have found the zero of the function.

Introduction to C++ Week 2 Dr Alex Martin 2013 Slide 17

 Finding roots of functions

The secant method can be implemented as follows.

int Secant(double x1, double x2,double precision,double& root)
{
 if(x1==x2 || f(x2)==f(x1)){
 root=0;
 return 0;
 }
 double x = x1 - f(x1)*(x2-x1)/(f(x2)-f(x1));
 if(fabs(f(x)) < precision){
 root = x;
 return 1;
 } else {
 return Secant(x2,x,precision,root);
 }
}

Again recursion is used to produce compact code

Introduction to C++ Week 2 Dr Alex Martin 2013 Slide 18

 Finding roots of functions

Newton-Raphson Method

This method is applicable whenever the derivative of the function is known.
In this case the trial solution consists of a single value x1

Introduction to C++ Week 2 Dr Alex Martin 2013 Slide 19

 Finding roots of functions

Since f '(x1) = Delta_y/Delta_x = (f(x1) - 0) / (x1 - x2)

where f '(x) indicates the first derivative.

The intercept of the tangent to the curve at (x1,y1) with the x axis is at:

x2 = x1 - f(x1) / f '(x1)

This will usually be a better approximation to the root than x1. We continue
the iteration

x3 = x2 - f(x2) / f '(x2)

x4 = x3 - f(x3) / f '(x3)

One can test for convergence by testing the value of the function divided by
the derivation at the current value of x, f(x_n) / f '(x_n)

Introduction to C++ Week 2 Dr Alex Martin 2013 Slide 20

 Finding roots of functions

Introduction to C++ Week 6 Dr Alex Martin 2013 Slide 21

 Finding roots of functions

If one writes a C++ function:

 double f(double x);

to evaluate the mathematical function of interest, then a C++ implementation of the bisection
method could look like:

int Bisect(double x1,double x2, double precision,double& root)
{
 if(f(x1)*f(x2) > 0){
// No apparent roots in this region
 root = 0;
 return 0;
 } else {
// Bisect the interval
 double x = 0.5*(x1+x2);
// Test for convergence
 if(fabs(f(x)) < precision){
 root = x;
 return 1;
 } else {
// Use the Bisect method on one of the subintervals
 if(f(x1)*f(x) < 0){
 return Bisect(x1,x,precision,root);
 } else {
 return Bisect(x,x2,precision,root);
 }
 }
 }
}

Introduction to C++ Week 6 Dr Alex Martin 2013 Slide 22

 Finding roots of functions

Notice that in this case an initial range [x1,x2] needs to be input, and a poor
choice can result in failure indicated by a return value of 0. Successive
bisections are carried out by recursively calling the Bisect function itself
after deciding in which of the two sub-ranges the root lies.

Introduction to C++ Week 6 Dr Alex Martin 2013 Slide 23

 Finding roots of functions

The Secant Method

Let y1 = f(x1) and y2 = f(x2) .

Construct a straight line through the points (x1,y1) and (x2,y2).
From similar triangles we have:

(x3 - x1) / (0 - y1) = (x2 - x1) / (y2 - y1)

Its intersection with the x-axis is therefore:

x3 = x1 - y1 (x2 - x1) / (y2 - y1)

Introduction to C++ Week 2 Dr Alex Martin 2013 Slide 24

 Finding roots of functions

If one sets:

x1 = x2

x2 = x3

Then after several iterations we will, in most cases, have found the zero of the function.

Introduction to C++ Week 2 Dr Alex Martin 2013 Slide 25

 Finding roots of functions

The secant method can be implemented as follows.

int Secant(double x1, double x2,double precision,double& root)
{
 if(x1==x2 || f(x2)==f(x1)){
 root=0;
 return 0;
 }
 double x = x1 - f(x1)*(x2-x1)/(f(x2)-f(x1));
 if(fabs(f(x)) < precision){
 root = x;
 return 1;
 } else {
 return Secant(x2,x,precision,root);
 }
}

Again recursion is used to produce compact code

Introduction to C++ Week 6 Dr Alex Martin 2013 Slide 26

 Finding roots of functions

Newton-Raphson Method

This method is applicable whenever the derivative of the function is known.
In this case the trial solution consists of a single value x1

Introduction to C++ Week 6 Dr Alex Martin 2013 Slide 27

 Finding roots of functions

Since f '(x1) = Delta_y/Delta_x = (f(x1) - 0) / (x1 - x2)

where f '(x) indicates the first derivative.

The intercept of the tangent to the curve at (x1,y1) with the x axis is at:

x2 = x1 - f(x1) / f '(x1)

This will usually be a better approximation to the root than x1. We continue
the iteration

x3 = x2 - f(x2) / f '(x2)

x4 = x3 - f(x3) / f '(x3)

One can test for convergence by testing the value of the function divided by
the derivation at the current value of x, f(x_n) / f '(x_n)

Introduction to C++ Week 6 Dr Alex Martin 2013 Slide 28

 Finding roots of functions

A C++ implementation of the Newton-Raphson Method to find a root to a required
precision could be:

int Newton(double x, double precision, double& root)
{
 double delta = f(x)/dfdx(x);
 while (fabs(delta) > precision){
 x-= delta;
 delta = f(x)/dfdx(x);
 }
 root=x;
 return 1;
}

Here it is assumed that both the function and its derivative

 double f(double x);
 double dfdx(double x);

Have been defined to calculate the value of the required function and its derivative
respectively. N.B. The integer return value is there simply to indicate success.

All three of these functions are demonstrated in the example program roots.cpp

http://pprc.qmul.ac.uk/ugcourses/mcps/showcode.html?desc=Finding+roots+of+functions&file=roots.cpp

Introduction to C++ Week 6 Dr Alex Martin 2013 Slide 29

 Function minimization

Function Minimization

Function Minimization Using the Newton-Raphson Method

Many physics problems involve the minimization of a function with respect to
one (or more) variables. In the simple case of one variable the minimum of a
function can usually be found by finding where the first derivative is zero. This is
equivalent to finding roots of an equation, except now we are working with the
first derivation function.

The Newton-Raphson iteration formula now becomes:

where f ' and f '' are the first and second derivatives respectively.

Introduction to C++ Week 6 Dr Alex Martin 2013 Slide 30

 Function minimization

An Example of Function Minimization: Fitting data

As an example of function minimization, consider the problem of fitting a straight line that goes through the origin

y = a x , where a is an unknown parameter

through a set of data points. For example:

 x y sigma

 0.1 0.2 0.1
 0.2 0.7 0.1
 0.3 1.0 0.1
 0.5 1.4 0.1

For each x value we have a measurement of y together with its associated error
sigma.

If we want to fit data we normally want to minimize the Chi-squared function given
by:

Introduction to C++ Week 6 Dr Alex Martin 2013 Slide 31

 Function minimization

If we want to fit data we normally want to minimize the
Chi-squared function given by:

with respect to the fit parameters (in this case the gradient a). We are
therefore trying to find:

Introduction to C++ Week 6 Dr Alex Martin 2013 Slide 32

 Function minimization

This type of problem can be fairly readily solved using the Newton-Raphson
iteration. To do this we need to find the first and second derivatives of the
Chi-squared function in terms of the measurements are their errors:

Using this technique a function which fits such a straight line to n data points
and errors stored in arrays x, y and sigma can be written.

Introduction to C++ Week 6 Dr Alex Martin 2013 Slide 33

 Function minimization

void nrfit(double* x, double* y, double* sig, int n,
 double& a, double& sig_a, double& chi2)
{
 const double precision = 1e-6;
 double g1,G11;
 double yy,dy,s2,chi2old,dchi2;
 chi2 =DBL_MAX;
 dchi2=DBL_MAX;
 while(fabs(dchi2) > precision){
 chi2old=chi2;
 chi2=0;
 g1=0;
 G11=0;
 for (int i=0; i < n; i++){
// calculate delta_y and chi2 for this point
 yy= a * x[i];
 dy= yy - y[i];
 chi2+=pow(dy/sig[i], 2);
 s2=1.0/(sig[i]*sig[i]);
// Contribution to the first and second derivatives
 g1 += 2*x[i]*dy*s2;
 G11+= 2*x[i]*x[i]*s2;
 }
// Calculate updated value for fit parameter a
 a-= (g1/G11);
// Calculate change of chi2
 dchi2=chi2old-chi2;
 }
// Calculate error on parameter a
 sig_a=sqrt(2.0/G11);
}

Introduction to C++ Week 6 Dr Alex Martin 2013 Slide 34

 Function minimization

Here the variables g1 and G11 represent the first and second derivatives
wrt the fit parameter a. After each iteration the change in Chi-squared dchi2
is calculated and the fit is terminated if this is sufficiently small.

Once the fit is complete, the error (uncertainty) on the fitted parameter is
calculated: sig_a=sqrt(2.0/G11).

The complete program can be found in the example linefit.cpp

http://pprc.qmul.ac.uk/ugcourses/mcps/showcode.html?desc=Function+Minimization&file=linefit.cpp

Introduction to C++ Week 6 Dr Alex Martin 2013 Slide 35

 Finding roots of functions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

