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The Trapezoidal Rule

If one has an arbitrary function f(x) to be integrated over the region [a,b] the 
simplest estimator that one can use is a linear approximation of f(x) over the 
integration region: 
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Evaluating the area of the resulting trapezoidal figure, which is clearly 
half of that of a rectangle with sides h = b-a  and f(a)+f(b) leads to the 
trapezoidal rule: 
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The trapezoidal rule can be extended by subdividing the interval into 
subintervals and summing the individual contributions. 
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The resulting extended trapezoidal rule takes the form: 

Notice that , the number of subintervals (n-1) , is arbitrary, so one can 
increase the precision of the approximation by simply increasing the value 
of n. 
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The implementation of the extended trapezoidal rule as a C++ function 
is fairly straightforward: 

double trap(double a, double b, int n)                  
{
    double h = (b-a)/(n-1);
//  Evaluate endpoints
    double value = 0.5*( f(a)+ f(b));  
//  Now the midpoints
    for(int k=2; k < n; k++){
        value+=f( a + h*(k-1) );
    }
    value*=h;
    return value;
}

Here it is assumed that the (mathematical) function that we wish to 
integrated is implemented as a C++ function called double f(double x). 

The source code for this function numint.cpp  and its associated header 
file numint.h  are available. 

http://pprc.qmul.ac.uk/ugcourses/mcps/showcode.html?desc=Numerical+Integration+techniques&file=numint.cpp
http://pprc.qmul.ac.uk/ugcourses/mcps/showcode.html?desc=Numerical+Integration+techniques&file=numint.h
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Simpson's Rule

The idea behind Simpson's rule is that we use a parabolic approximation (rather 
than the linear approximation used in the trapezoidal method) to the function 
over the integration region. 

Consider a function f(x) integrated over the region [-h,h] 



Introduction to C++   Week 2                      Dr  Alex Martin   2013   Slide 8

        Numerical Integration Methods     
                             



Introduction to C++   Week 2                      Dr  Alex Martin   2013   Slide 9

        Numerical Integration Methods     
                             

By subdividing an integral range into a series of such triplets of points and 
summing the approximation to the sub-integrals one obtains Simpson's Rule: 

The Simpson's Rule is fairly readily implemented in a similar way to 
the extended trapezoidal rule. 

In The Simpson's Rule   n must be odd
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Finding Roots of Functions 

Consider a function such as: 

f(x) = x3 - 2 x + 1 

There are several numerical methods for finding the roots, xi, 
where, f(x)=0. 
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Bisection Method

Let y1 = f(x1) and y2 = f(x2).

If  y1.y2 < 0 , then there must be (at least one ) zero of the function in 
the region [x1,x2]. 

The midpoint of the interval is: 

x3 = 0.5   *   (x1 + x2) 

And y3 = f(x3). 

Then either y1.y3 < 0  or  y2.y3 < 0 . In the first case the root lies in the 
region [x1,x3] and in the second it lies in the region [x3,x2]. 
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Once we have restricted the interval we can iterate by repeating the 
process. The strategy is to keep bisecting the interval that contains the 
zero. 

The difficulty with the bisection method is in finding a initial region 
[x1,x2] that contains one root (or an odd number of roots).  
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If one writes a C++ function: 

    double f(double x);

to evaluate the mathematical function of interest, then a C++ implementation of the bisection 
method could look like: 

int Bisect(double x1,double x2, double precision,double& root)         
{
    if( f(x1)*f(x2) > 0 ){
//      No apparent roots in this region
        root = 0;
        return 0;
    } else {
// Bisect the interval
        double x = 0.5*(x1+x2);
//      Test for convergence
        if( fabs(f(x)) < precision){
            root = x;
            return 1;
        } else {
//   Use the Bisect method on one of the subintervals 
            if( f(x1)*f(x) < 0 ){
                return Bisect(x1,x,precision,root);
            } else {
                return Bisect(x,x2,precision,root);
            }
        }
    }
}
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Notice that in this case an initial range [x1,x2] needs to be input, and a poor 
choice can result in failure indicated by a return value of 0. Successive 
bisections are carried out by recursively calling the Bisect function itself 
after deciding in which of the two sub-ranges the root lies. 
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The Secant Method

Let y1 = f(x1) and y2 = f(x2) . 

Construct a straight line through the points (x1,y1) and (x2,y2). 
From similar triangles we have: 

( x3   -   x1 ) / ( 0   -   y1 ) = ( x2   -   x1 ) / ( y2  -  y1 ) 

Its intersection with the x-axis is therefore: 

x3 = x1  -  y1 ( x2  -  x1)  /  ( y2  -  y1 ) 
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If one sets: 

x1 = x2 

x2 = x3 

Then after several iterations we will, in most cases, have found the zero of the function.  
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The secant method can be implemented as follows. 

int Secant(double x1, double x2,double precision,double& root)
{
    if(x1==x2 || f(x2)==f(x1)){
        root=0;
        return 0;
    }
    double x = x1 - f(x1)*(x2-x1)/(f(x2)-f(x1));
    if( fabs(f(x)) < precision){
        root = x;
        return 1;
    } else {
        return Secant(x2,x,precision,root);
    }
}

Again recursion is used to produce compact code
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Newton-Raphson Method

This method is applicable whenever the derivative of the function is known. 
In this case the trial solution consists of a single value x1 
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Since      f '(x1) = Delta_y/Delta_x = ( f(x1) - 0 ) /  ( x1 - x2 ) 

where f '(x) indicates the first derivative. 

The intercept of the tangent to the curve at (x1,y1) with the x axis is at: 

x2 = x1 - f(x1)   /  f '(x1) 

This will usually be a better approximation to the root than x1. We continue 
the iteration 

x3 = x2 - f(x2)   /  f '(x2) 

x4 = x3 - f(x3)   /  f '(x3) 

One can test for convergence by testing the value of the function divided by 
the derivation at the current value of x,         f(x_n)   /  f '(x_n) 
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If one writes a C++ function: 

    double f(double x);

to evaluate the mathematical function of interest, then a C++ implementation of the bisection 
method could look like: 

int Bisect(double x1,double x2, double precision,double& root)         
{
    if( f(x1)*f(x2) > 0 ){
//      No apparent roots in this region
        root = 0;
        return 0;
    } else {
// Bisect the interval
        double x = 0.5*(x1+x2);
//      Test for convergence
        if( fabs(f(x)) < precision){
            root = x;
            return 1;
        } else {
//   Use the Bisect method on one of the subintervals 
            if( f(x1)*f(x) < 0 ){
                return Bisect(x1,x,precision,root);
            } else {
                return Bisect(x,x2,precision,root);
            }
        }
    }
}
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Notice that in this case an initial range [x1,x2] needs to be input, and a poor 
choice can result in failure indicated by a return value of 0. Successive 
bisections are carried out by recursively calling the Bisect function itself 
after deciding in which of the two sub-ranges the root lies. 



Introduction to C++   Week 6                      Dr  Alex Martin   2013   Slide 23

             Finding roots of functions         
                        

The Secant Method

Let y1 = f(x1) and y2 = f(x2) . 

Construct a straight line through the points (x1,y1) and (x2,y2). 
From similar triangles we have: 

( x3   -   x1 ) / ( 0   -   y1 ) = ( x2   -   x1 ) / ( y2  -  y1 ) 

Its intersection with the x-axis is therefore: 

x3 = x1  -  y1 ( x2  -  x1)  /  ( y2  -  y1 ) 
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If one sets: 

x1 = x2 

x2 = x3 

Then after several iterations we will, in most cases, have found the zero of the function.  
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The secant method can be implemented as follows. 

int Secant(double x1, double x2,double precision,double& root)
{
    if(x1==x2 || f(x2)==f(x1)){
        root=0;
        return 0;
    }
    double x = x1 - f(x1)*(x2-x1)/(f(x2)-f(x1));
    if( fabs(f(x)) < precision){
        root = x;
        return 1;
    } else {
        return Secant(x2,x,precision,root);
    }
}

Again recursion is used to produce compact code
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Newton-Raphson Method

This method is applicable whenever the derivative of the function is known. 
In this case the trial solution consists of a single value x1 
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Since      f '(x1) = Delta_y/Delta_x = ( f(x1) - 0 ) /  ( x1 - x2 ) 

where f '(x) indicates the first derivative. 

The intercept of the tangent to the curve at (x1,y1) with the x axis is at: 

x2 = x1 - f(x1)   /  f '(x1) 

This will usually be a better approximation to the root than x1. We continue 
the iteration 

x3 = x2 - f(x2)   /  f '(x2) 

x4 = x3 - f(x3)   /  f '(x3) 

One can test for convergence by testing the value of the function divided by 
the derivation at the current value of x,         f(x_n)   /  f '(x_n) 
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A C++ implementation of the Newton-Raphson Method to find a root to a required    
precision could be: 

int Newton(double x, double precision, double& root)            
{
    double delta = f(x)/dfdx(x);
    while ( fabs(delta) > precision ){
        x-= delta;
        delta = f(x)/dfdx(x);
    }
    root=x;
    return 1;
}

Here it is assumed that both the function and its derivative 

    double f(double x);                 
    double dfdx(double x);

Have been defined to calculate the value of the required function and its derivative 
respectively. N.B. The integer return value is there simply to indicate success. 

All three of these functions are demonstrated in the example program roots.cpp  

http://pprc.qmul.ac.uk/ugcourses/mcps/showcode.html?desc=Finding+roots+of+functions&file=roots.cpp
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Function Minimization 

Function Minimization Using the Newton-Raphson Method

Many physics problems involve the minimization of a function with respect to 
one (or more) variables. In the simple case of one variable the minimum of a 
function can usually be found by finding where the first derivative is zero. This is 
equivalent to finding roots of an equation, except now we are working with the 
first derivation function. 

The Newton-Raphson iteration formula now becomes: 

where f ' and f '' are the first and second derivatives respectively. 
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An Example of Function Minimization: Fitting data 

As an example of function minimization, consider the problem of fitting a straight line that goes through the origin 

y = a x  ,  where a is an unknown parameter 

through a set of data points. For example: 

                  x              y           sigma

                0.1           0.2           0.1                                                                                                                                                     
                0.2           0.7           0.1                                                                                                                                                     
                0.3           1.0           0.1                                                                                                                                                     
                0.5           1.4           0.1

For each x value we have a measurement of y together with its associated error 
sigma. 

If we want to fit data we normally want to minimize the Chi-squared function given 
by: 
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If we want to fit data we normally want to minimize the 
Chi-squared function given by: 

with respect to the fit parameters (in this case the gradient a). We are 
therefore trying to find:   
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This type of problem can be fairly readily solved using the Newton-Raphson 
iteration. To do this we need to find the first and second derivatives of the   
Chi-squared function in terms of the measurements are their errors:

Using this technique a function which fits such a straight line to n data points 
and errors stored in arrays x, y and sigma can be written. 
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void nrfit(double* x, double* y, double* sig, int n,       
           double& a, double& sig_a, double&  chi2)        
{
        const double precision = 1e-6;
        double g1,G11;
        double yy,dy,s2,chi2old,dchi2;
        chi2 =DBL_MAX;
        dchi2=DBL_MAX;
        while( fabs(dchi2) > precision ){
            chi2old=chi2;
            chi2=0;
            g1=0;
            G11=0;
            for (int i=0; i < n; i++ ){
// calculate delta_y and chi2 for this point
            yy= a * x[i];
            dy= yy - y[i];
            chi2+=pow( dy/sig[i], 2);
            s2=1.0/(sig[i]*sig[i]);
// Contribution to the first and second derivatives
            g1 += 2*x[i]*dy*s2;
            G11+= 2*x[i]*x[i]*s2;
        }
// Calculate updated value for fit parameter a
        a-= ( g1/G11);
// Calculate change of chi2
        dchi2=chi2old-chi2;
    }
// Calculate error on parameter a 
    sig_a=sqrt(2.0/G11);
}
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Here the variables g1 and G11 represent the first and second derivatives 
wrt the fit parameter a. After each iteration the change in Chi-squared dchi2 
is calculated and the fit is terminated if this is sufficiently small. 

Once the fit is complete, the error (uncertainty) on the fitted parameter is 
calculated: sig_a=sqrt(2.0/G11). 

The complete program can be found in the example linefit.cpp 

http://pprc.qmul.ac.uk/ugcourses/mcps/showcode.html?desc=Function+Minimization&file=linefit.cpp
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