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SECTION A. Attempt answers to all questions.

A 1 The set of all polynomials P(z) of degree 1 with real coefficients: P(z) = a + bz form a
vector space. Are the following three elements Py(x) = 142z, Po(z) = z and P3(z) = 142
linearly dependent? Please justify your answer.

A 2 If A is an observable, prove that the eigenalues of A? are real and positive.

A 3 Suppose that the commutator between two Hermitian operators & and b is &, 5] = A,
where A is a complex number. Show that the real part of A must vanish.

A 4 Ag and Ab represent the uncertainties on simultaneous measurements of the operators
@ and b introduced in the previous question. What is the minimal value of the product

(Ag)(Ab)?

A 5 Consider the creation and annihilation operators @ and &' whose commutation relation is
[a,al] = 1. Calculate the commutator [g, (&1)?].

A 6 The ket vector |n) represents the n'* energy level of an harmonic oscillator and is nor-
malised as follows (n|n) = 1. Prove that the operator P = [1){1]| + |3}(3] is a projector.

A 7 The three generators of the su(2) algebra S, Js, j;; satisfy the following commutation

. . 3 h o
relations: [Jy, J}) = & Y €uimdim. Calculate the commutator [JZ, Jo).
m=1

A 8 A helium atom has two electrons in the first shell (1s). Explain, without detailed deriva-
tion, what the value of the total spin quantum number is.

A 9 Consider a spin % particle whose spin along the z-axis is ’—21 What is the probability of
finding the value % in a measurement of the spin along the z-axis?

A 10 Consider the following Hermitian operator in C2:

r- (5 %),
iH

Find the eigenvalues of the operator .
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SECTION B. Answer two of the four questions in this section.
B1

Consider a quantum mechanical system described by the Hamiltonian A = $2/2 + £%/2 and
use the conventions /i = 1 for this problem.

(a) Write the above Hamiltonian in terms of the operators & = J5(2 +4p) and &' = (2 — i)

L
and find the energy of the ground state |0). (5]
(b) At t = 0 the system is described by the state |v,t = 0} = M (|0) + &47|0)). Normalise this

state appropriately and find the vector |v,t) describing the system at later time ¢ > 0. [7]
(c) Compute the average position z(t) = (v, t|Z|v,t). and momentum p(t) = (v, t|plv, t). [8]

(d) Check explicitly that the average quantities computed in (c) satisfy the classical equations

d 0 d o

B2

(a) Check explicitly that the three matrices

0 10 00 -1 0 0 0
Ley=ik| =1 0 0§, Ly=2{ 0 0 0O y, L= | 0 0 1
0 00 10 0 0 -1 0

satisfy the commutation relations of the angular momentum algebra. (5]

(b) Consider a particle of spin 1 which is governed by the Hamiltonian H = a(L, + L, + L,).
Give a matrix representation of H and find the possible values for the energy. (8]

(¢) Find the ket |g) representing the ground state of H. [5]

(d) Suppose that an external perturbation modifies the Hamiltonian so that it becomes Hyew =
H + W, where
e 00
W=AK|00 0 ) ,
000

and ¢ < a. Use perturbation theory and calculate the new ground state energy at the order e.  [7]
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B3

(a) The motion of a particle in the 3-dimensional space is described by the Hamiltonian g =
H, -+ H, + H,, where

- 1¢(. . A 1/, . . N .
Hx=§(§+$2) , Hy=§(p§+y2) , sz—g-(pz-i-zz).
Check that the standard angular momentum operators f;r, is a constant of the motion

32 .
(b) By knowing that the ground state wavefunction for H, is proportional to e™=, write the
wavefunction (z, vy, z) representing the ground state for H (you are not required to fix the
normalization of the wavefunctions in this problem).

(c) Check that 9o(z, ¥, 2) is an eigenvector of I, and find the corresponding eigenvalue.

(d) If the system is described by the wavefunction ¢(z) = Jxbo(, ¥, 2), what are the possible
outcomes for a measurement of L,

B4

(a) Consider a free particle of mass m is constrained in a 1-dimensional interval of size L. Find
the eigenstate of the Hamiltonian H = 5% with the usual boundary conditions (0} = ¥(L) = 0.

(b) Parametrising this interval with with 0 < z < L, find the at £ = 0 the system is described
by the ket vector |4) corresponding to thé wavefunction

(ol =4(s) = 4 (e0s [T =1 ),

where A is constant. Normalize the vector to 1.
(c) What is the average value of the position when the system is in the state |) 7

(d) What is the probability to find the system in the ground state 7
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FORMULA SHEET

Pauli matrices:

0 1 0 -z 1 0
Ulz(l 0)’ "2:(i 0)’ “3=(o —1)'
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