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• Fermionic particles, whose wavefunction must be antisymmetric |v�F = −P 12|v�F .

Also the observables in composite systems with identical particles must have special prop-
erties under the exchange of the labels indicating the various particles. In particular, an
observable O must commute with the operation that permute the role of two particles
P ij: [O,P ij] = 0, ∀ij.

7.2.1 Examples and exercises.

Consider a system of two identical particles each one described by a state in C
2. If this

particles are boson then the possible states are

|v1�B =

�
1
0

�
⊗

�
1
0

�
, |v3�B =

�
1
0

�
⊗

�
1
0

�
(7.6)

|v2�B =
1
√
2

��
1
0

�
⊗

�
0
1

�
+

�
0
1

�
⊗

�
1
0

��
.

On the other hand, if the two particles are fermions then there is only one possible state

|v�F =
1
√
2

��
1
0

�
⊗

�
0
1

�
−

�
0
1

�
⊗

�
1
0

��
. (7.7)

Exercises.

• Consider a two particle state whose constituents are bosons. The initial state of the
system is then described by a symmetric state. Is this property preserved by the
time evolution? Why?

8 Symmetries.

We saw that Hermitean operators play a central role in Quantum Mechanics: they rep-
resent the observables of a physical system. There is another very important class of
operators: the unitary operators U , that are the operators preserving the norm of any
vectors

||U |ψ�||2 = ||�ψ|U †Uψ� = |||ψ�||2 , ∀|ψ� . (8.1)

This implies that U †U = 1. If we work with a finite dimensional Hilbert space, where
we can represent the operators with matrices, then we can check explicitly if a matrix is
unitary (see the example below). Unitary operators are important in QM, because they
represent the action of a symmetry operation on a physical system: starting with a system
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described by the ket |ψ�, we can obtain the ket U |ψ� which describes the same system
after the symmetry operation related to U . U must be a unitary operator since we want
to keep the normalization condition |||ψ�||2 = 1.

It is easy to build explicitly unitary operators starting from the Hermitean ones we
have been using so far. We can just repeat the trick we used in (5.1) with the Hamiltonian:
if now H is any operator satisfying H = H†, then we can repeat the same steps11 and
prove that Ua = exp(iaH) is a unitary operator for any real a.

8.1 Translations.

Consider a free particle in one dimension whose state is encoded by the wavefunction (5.14),
which describes a particle around the position x = 0 with a precision determined by a.
Since the particle is free, we can displace it by x0 (so that the Gaussian is centred in x0

instead of z0) and many observables, such as the energy of the system, should not change.
The operator representing this operation should act on (5.14) as follows:

UT (x0)

�
A

√
πa

e−
x
2

a2

�
=

A
√
πa

e−
(x−x0)

2

a2 . (8.2)

We can derive the form of UT (x0) looking at the case of an infinitesimal translation (a very
small x0), so that we can Taylor-expand the right hand side of the above equation and
keep only the first two terms

UT (x0)

�
A

√
πa

e−
x
2

a2

�
=

A
√
πa

e−
x
2

a2 + x0
d

dx0

�
A

√
πa

e−
(x−x0)

2

a2

�

x0=0

+ . . . . (8.3)

From this result we see that UT (x0) = 1 + x0d/dx0 + . . . = 1 − x0d/dx + . . .. Thus, for
small x0 we can write UT (x0) = 1 − ix0p̂/� + . . . and by using the observation above we
can readily guess that

UT (x0) = exp

�
−

i

�x0p̂

�
. (8.4)

At this point it is easy to see that all possible translation operators form a group (see the
first Section):

UT (x0)UT (x1) = exp

�
−

i

�x0p̂

�
exp

�
−

i

�x1p̂

�
= exp

�
−

i

�(x0 + x1)p̂

�
≡ UT (x0+x1) . (8.5)

With these results we established an important fact

11Starting from a vector |ψ� of norm 1, we can check that the norm of Ua|ψ� is independet of a and
thus is one.
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The momentum is directly related to the translation operation (technically
speaking: the momentum is the generator of the translations).

Notice that, if an observable O commutes with p̂, then the results of a measurment of
O are the same if carried out on the system before or after a translation. For instance,
in the case of a free particle we have [H, p̂] = 0; then the wavefunctions (5.14) and (8.2)
yields the same results for a measurement of the energy.

8.1.1 Examples and exercises.

Notice that the result (8.4) is not tight to a particular realization of the position/momentum
operators, such as the position-space wavefunction. For instance, when the translation
operator acts on the momentum-space wavefunctions (see, for instance, Eq. (5.16)), then
it simply multiplies ψ(p) by the phase exp(−ix0p/�).

Exercises.

• Use the explicit form of the translation operator (8.4) and prove Eq. (8.2).

8.2 The rotations.

Another relevant group of symmetries is represented by the rotations (here we focus on
the rotation in the 3-dimensional space). The generator of the rotation is another very
important observable: the angular momentum.

Lx = ŷp̂z − ẑp̂y ≡ L1 , (8.6)

Ly = ẑp̂x − x̂p̂z ≡ L2 ,

Lz = x̂p̂y − ŷp̂x ≡ L3 .

By using the canonical commutation relation [x̂, p̂] = i�, we obtain the following relations

[L1, L2] = i�L3 , [L1, L3] = −i�L2 and cyclical permutations. (8.7)

If we repeat the same argument discussed in the case of translation, we should see that
the unitary operators generated by the exponential of the angular momentum represent
the rotations, that is for a rotation of an angle θ around the z-axis we should have

UR(θ)e
− (�r−�r0)

2

a2 = exp

�
−

i

�θLz

�
e−

(�r−�r0)
2

a2 = e−
(�r−�r1)

2

a2 , (8.8)

where I neglected the overall normalization of the wavefunction that is irrelevant in this
computation. The position of the particle before the rotation is �r0, while after the rotation
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is �r1. The coordinates of these two points are related as explained in the example below.
It is straightforward to check that (8.8) holds in the case of very small angles θ: again, as
in the computation done before for the translations, it is sufficient to Taylor-expand all
θ-dependent quantitites up to the first order and, in this case, use the definition of Lz, see
Eq. (8.6). Notice that the wavefunctions that depend only r2 (such as the one above with
�r0 = 0) are invariant under rotations, as expected! In order to check this it is sufficient
to calculate the action of the Li’s on a (wave)function that depends only on r2 and see
that is trivial (zero). For instance

Lzψ(r
2) = −i�

�
x
∂

∂y
− y

∂

∂x

�
ψ(r2) (8.9)

= −i�dψ(r
2)

dr2

�
x
∂r2

∂y
− y

∂r2

∂x

�
= −i�dψ(r

2)

dr2
(2xy − 2yx) = 0 .

A similar computation holds also for the other components of the angular momentum Lx

and Ly.
Finally let us notice that also the set of all rotations forms a group. We will discuss

the precise nature of this group later in this and the next sections.

8.2.1 Examples and exercises.

Consider for instance the operator

O(θ) =




cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 (8.10)

acting on the space C
3. It represents a rotation of an angle θ around the z-axis. For

instance, consider a point whose coordinates are x0 = r cosα , y0 = r sinα.

x0

y0

y1

x1

α

θ

After the rotation the new coordinates are

x1 = r cos(α + θ) = r cosα cos θ − r sinα sin θ = x0 cos θ − y0 sin θ ,

y1 = r sin(α + θ) = r cosα sin θ + r sinα cos θ = x0 sin θ + y0 cos θ .



Rodolfo Russo - QMS - Notes 38

Exercises.

• Consider the operator L2

L2
≡ L2

x
+ L2

y
+ L2

z
=

3�

i=1

L2
i
. (8.11)

Show explicitly that it commutes with all the components of the angular momentum

[L2, Lx] = 0 , [L2, Ly] = 0 , [L2, Lz] = 0 . (8.12)

• Check explicitly that

(Lx+iLy)(Lx−iLy) = L2
−L2

z
+�Lz , (Lx−iLy)(Lx+iLy) = L2

−L2
z
−�Lz . (8.13)

8.3 The angular momentum.

It is clearly important to find the basis of the angular momentum eigenvectors: this can
be useful when we want to perform explictly a rotation (in this basis the operator in the
exponent becomes just a number) or when the Hamiltonian commutes with Li (as in the
problem of the Hydrogen atom). Of course we can not find simultaneous eignvectors for
all components of the angular momentum, since they do not commute, see (8.6). The best
we can achieve is to choos one component (for instance Lz) and look for the simultaneous
eigenvectors of L2 and Lz. This is possible thanks to Eq. (8.12). We already know one set
of eigenvectors: from (8.9) it follows that any wavefunction ψ(r2) is an eigenvector with
eigenvalue zero for both L2 and Lz. We can attack the general problem by following an
approach similar to the one used to find the energy eigenvectors of the harmonic oscillator
hamiltonian.

In this derivation we will be using only two facts:

• the Hermitean properties L†
i
= Li,

• the commutation relations between Li, given in (8.7), and their consquences.

Thus the results we will derive do not depend on the explicit form of the angular mo-
mentum operators (8.6) and hold for any triplet of Hermitean operators satisfying (8.7).
In order to stress that the results are general we will use Jx, Jy and Jz to indicate three
generic Hermitean operators satisfying (8.6).

Step 1. Suppose that we have an eigenvector of J2 and Jz

J2
|j,m� = �2j(j + 1)|j,m� , Jz|j,m� = �m|j,m� , (8.14)



Rodolfo Russo - QMS - Notes 39

where for later convenience we denoted the eigenvalue of J2 with �2j(j +1). Let us show
that the possible eigenvalues of J2 are non-negative (so that we can write them as the
�
�

j(j + 1) with j ≥ 0). This is easily done:

�2j(j + 1) = �j,m|J2
|j,m� = ||J |j,m�||

2
≥ 0 . (8.15)

Step 2. Let us introduce the operators L±:

J+ = Jx + iJy , J− = Jx − iJy . (8.16)

It is straightforward to check that

[Jz, J+] = �J+ , [Jz, J−] = −�J− , (8.17)

while from (8.12) it is clear that also J± commute with J2. Now, starting from |j,m�, we
can generate new eigenvectors by acting with J±. By using (8.17) we have

J2J±|j,m� = �2j(j + 1)J±|j,m� , JzJ±|j,m� = �(m± 1)J±|j,m� . (8.18)

So the state J±|j,m� is an eigenvector of J2 with the same eigenvalue as |j,m� and is
also an eigenvector of Jz with eigenvalue �(m ± 1). This proves that we can increase or
dercrease the quantum number m by an integer.

Step 3. The value of m must be bigger than −j and smaller than j:

−j ≤ m ≤ j . (8.19)

This is done by using again that the scalar product is non-degenerate together with (8.13)

||J+|j,m�||
2 = �j,m|J−J+|j,m� = �j,m|(J2

−J2
z
−�Jz)|j,m� = �2

�
j(j+1)−m(m+1)

�
.

(8.20)
Since ||J+|j,m�||2 ≥ 0 then we must have

j(j + 1)−m(m+ 1) = (j −m)(j +m+ 1) ≥ 0 , (8.21)

which imples −j − 1 ≤ m ≤ j. In the same fashion we can calculate the norm square of
J−|j,m�

||J−|j,m�||
2 = �j,m|J−J+|j,m� = �j,m|(J2

−J2
z
+�Jz)|j,m� = �2

�
j(j+1)−m(m−1)

�
.

(8.22)
and we find that it is non-negative only if

j(j + 1)−m(m− 1) = (j −m+ 1)(j +m) ≥ 0 , (8.23)
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which imples −j ≤ m ≤ j + 1. By combining these two results we find (8.19).
Step 4. The quantum number j must be either integer of half-integer. From step 2

above, we know that J± act as raising/lowering operators for the Jz quantum number.
If we begin with an eigenvector |j,m� we can apply J+ (or J−) in order to increase
(or decrease) the value of m. On the other hand we cannot violate the bound found
above (8.19), thus at a certain point we must find

J+|j,m� = 0 and J−|j,−m� = 0 . (8.24)

This is possible only if m = j (see (8.20)). Now I can start from the ket |j, j� and apply
J− k times to lower the value of the Jz eigenvalue to m = j − k. On the other hand we
know that m ≥ −j, which implies that after k = 2j lowering operators have been applied
to |j, j� we obtain a vector proportional to |j,−j� and a further J− would simply lead to
the zero vector. Since k is integer (it counts the number of J−), then j must be integer
of half-integer, as claimed above.

As a final remark, let us specialize this analysis to the angular momentum: in this
case (8.6) implies that only integer values of j are possible (see the discussion below in
the Example section).

8.3.1 Examples and exercises.

Let us focus on the case of the angular momentum and derive some explicit expression
for the eigenstates. We already know that any wavefunction ψ(r2) is an eigenstate with
j = m = 0. Thus if we find other eigenfunctions (with non-zero eigenvalues) we are free to
multiple them by any function of r2 only without changing the eigenvalues. You already
saw this pattern in the study of the Hydrogen atom, where the energy eigenfunctions are
the product of a radial function times a purely angular function that is an eigenvector of
L2 and Lz (the spherical harmonics for the 2-sphere). We can derive the explicit form of
the spherical harmonics by using the results of this section. We start by checking that
the function

Y m=j

j
= N

j

j

�
x+ iy

r

�j

= N
j

j
(sin θ)je2πijφ (8.25)

is an eigenfunction of L2 and Lz with eigenvalues j and m = j. The last relation on thee
right hand side is just the rewriting of the Y j

j
in polar coordinates. The quantum number

j here can take only integer values, otherwise the function Y m=j

j
is not single valued (as

it is clear if we look at the form written in polar coordinates and recall that φ = 0 and
φ = 2π represent the same point). Let us look at the first non-trivial case j = 1. By
using the L− operator we can find the other spherical harmonics

Y m=0
1 =

L−

�
√
2

�
N

1
1 Y 1

1

�
= −N

1
1

√
2z

r
. (8.26)
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The numerical factor of
√
2� ensures that the new spherical harmonics is normalized to

one if the old one is normalized to one. It follows from (8.22) which in general requires
to devide by �

�
(j −m+ 1)(j +m) everytime L− acts on |j,m� if we want to work with

vector of norm one.

Y m=−1
1 =

L−

�
√
2

�
−N

1
1

√
2z

r

�
= −N

1
1

x− iy

r
. (8.27)

You can rewrite these last two equation in polar coordinates and find the expression for
the spherical harmonics that you did see in the analysis of the Hydrogen atom. You can
repeat the same steps starting from (8.25) with j = 2 and find the explicit form of the 5
harmonics of the level 2.

Exercises.

• Calculate N 1
1 in (8.25) by requiring that

�
Ȳ 1
1 Y

1
1 dΩ = 1

* Consider the wavefunction ψ = x2/r2. What is the probability of finding the values
j and m in a simultaneous measurement of L2 and Lz?

9 The spin.

We saw that a triplet of operators satisfying the commutation relations (8.7) can admit
eigenvectors with a half-integer quantum number j. We also know that this kind of
eigenvectors do not appear when we focus on the case of the angular momentum, where
the generator take the particular form of Eq (8.6). One might wonder whether the case of
half-integer j appears in some interesting physical system or not. The surprising answer
is that this case is indeed very common!

9.1 SO(3) representations.

Consider the three wavefunctions (8.25), (8.26) and (8.27) derived in the previous example.
They form a basis for the subspace of wavefunctions with j = 1 (so the J2 eigenvalue is
2�2 for all these states). We can represent these three states as follows

Y 1
1 ↔ |1, 1� =




1
0
0



 , Y 0
1 ↔ |1, 0� =




0
1
0



 , Y −1
1 ↔ |1,−1� =




0
0
1



 . (9.28)
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From the results summarized in the previous example, we know how Lz and L± act that
in this subspace

Lz = �
�
|1, 1��1, 1| − |1,−1��1,−1|

�
, (9.29)

L+ =
√
2�

�
|1, 1��1, 0|+ |1, 0��1,−1|

�
,

L− =
√
2�

�
|1, 0��1, 1|+ |1,−1��1, 0|

�
.

These operators cen ba written in terms of matrices acting on the vector (9.28)

Lz = �




1 0 0
0 0 0
0 0 −1



 , L+ = �




0

√
2 0

0 0
√
2

0 0 0



 , L− = �




0 0 0
√
2 0 0
0

√
2 0



 ,

(9.30)
The three states in (9.28) form the so-called vector representation of the SO(3) rotation
group. Let us check that there is a direct relation between the matrices (9.30) and the
generators of the rotations as seen in (8.10). In order to see this let us introduce the
matrix

A =





1√
2

0 −1√
2

−i√
2

0 −i√
2

0 1 0



 .

From eqs. (8.25), (8.26) and (8.27), we can see that A implements a change of basis
from the eigenvectors Y 1

1 to the standard cartesian basis where the first eigenfunction is
proportional to x and the remaining ones to y and z. In this basis the generators of the
rotation around z (Lz) takes a different form with the respect of (9.30)

Lz = A�




1 0 0
0 0 0
0 0 −1



A−1 = �




0 i 0
−i 0 0
0 0 0



 . (9.31)

Similar relations hold for Lx and Ly showing that, in this basis, they form the standard
generators for the SO(3) rotation group (see the example 8.2.1).

Exercises.

[Op. ] One can follow a similar derivation also for the 5 eigenfunctions with j = 2.
Show that there is a one-to-one correspondence between these eigenfunctions and
the symmetric square matrices.
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9.2 Spin 1/2 and SU(2) representations.

So far we have described particles through their position and momentum. Mathematically
these observables are related to two Hermitean operators x̂ and p̂ satisfying the canonical
commutation relations (5.4). Since, by hypothesis we are dealing with point-like object,
apparently there is no room for any other basic observable and one might think that all
other observables should be build by using x̂ and p̂. (For instance, the angular momentum
is given by (8.6), the Hamiltonian is give, in the free case, by Eq. (5.3)). However this is
not what happens in nature. On the contrary all known “matter” particles (such as the
electron, the muon, the quarks, the neutrinos) are not completly determined by specifying
their position12. It turns out that matter particles possess additional degrees of freedom
called “spin”. To be precise this means, for this particles we have the following properties:

• The spin degrees of freedom are described by a triplet of operators Sx, Sy and Sz

satisfying the relations (8.7). A complete set of commuting operators (CSCO) is
given, for instance, by x̂, Sz and S2.

• The Hilbert space describing the state of the particle is the tensor product of the
Hilbert space Hx where x̂ and p̂ act and the Hilbert space HS where the Si act.

• Elementary matter particles with half-integer spin behave as fermions, while those
with integer spin behave as boson (and, as we have seen in the previous section
this affects the description of multiparticle systems!). For instance, for a spin 1/2
particle the only (eigen)value of S2 is 3�2/4 corresponding to an eigenvalues s = 1/2.
This implies that HS is two dimensional and a basis for this space is given by

|s =
1

2
,m =

1

2
� , and |s =

1

2
,m = −

1

2
� ,

where as in the previous section, the first and the second number indicate the
eigenvalues of S2 and Sz respectively.

9.2.1 Examples and exercises.

An explicit realization of HS is C2. As usual in the case of finite dimensional spaces, we
can realize any operator as a matrix. Conventionally the following choice is taken for the
spin operators: Sa =

�
2σa, with a = 1, 2, 3 and

σ1 =

�
0 1
1 0

�
, σ2 =

�
0 −i
i 0

�
, σ3 =

�
1 0
0 −1

�
. (9.32)

12Of course in quantum mechanics specifying the position of the particle means that give a wavefunction
ψ(x) = �x|ψ�.
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These σ’s are called Pauli matrices. In this representation we have

|
1

2
,
1

2
� ↔

�
1
0

�
, and |

1

2
,−

1

2
� ↔

�
0
1

�
. (9.33)

These two states are commonly indicated as “spin up” and “spin down” states.
Exercises.

• Check the following property of Pauli matrices

[σa, σb] = 2i�abcσc , σaσb + σbσa = 2δab , (9.34)

• Show that

eiφσ2 =

�
cosφ sinφ
− sinφ cosφ

�
(9.35)

9.3 Addition of two spins.

Consider now a two particle systems whose constituents have spin s(1) and s(2) respectively.
As we know, the Hilbert space describing the whole system is the tensor product of the
spaces describing the single constituents. In particular, we also need to consider the
tensor product of the spaces describing the spin: HS1 for the first particle and HS2 for
the second one. The total spin of the system is of course �S = �S1 + �S2, where �S1 acts only
on the first space H1 and �S2 on the second one. Then also the components of �S satisfy
the commutation relations (8.6) and so we we should be able to write the states of the
total system in terms of the eigenvectors derived in the previous section. The question
we want to address now is what are the eigenvalue for the total spin S2, if we know the
eigenvalue of each of the constituents. We have the following result:

If s1 and s2 indicate the spin quantum number of the constituents (that is S2
1

eigenvalue is �2s1(s1 + 1) and similarly for S2
2), then the possible eigenvalues

for the total spin S2 are s with |s1 − s2| ≤ s ≤ s1 + s2 and each eigenvalue
appears just as one multiplet (a set of 2s+ 1 values of Sz).

Let us work out explicitly the simple case of two objects having each one spin 1/2. For
instance consider an hydrogen atom: both the proton and the electron have spin 1/2 and
we would like to know the spin of the whole atom. The spin states

|↑, ↑� =

�
1
0

�
⊗

�
1
0

�
, |↑, ↓� =

�
1
0

�
⊗

�
0
1

�
, (9.36)

|↓, ↑� =

�
0
1

�
⊗

�
1
0

�
, |↓, ↓� =

�
0
1

�
⊗

�
0
1

�
,
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where the first (second) entry refers to the the first (second) particle and we used ↑ in
order to indicate a state with the positive eigenvalue of Sz. Clearly the z-component of
the total spin of the state |↑, ↑� is � and thus it must represent the eigenvector |1, 1�.
From this vector we can generate the other two states of the triplet with s = 1

|1, 0� =
1
√
2

�
|↑, ↓�+ |↓, ↑�

�
, |1,−1� = |↓, ↓� . (9.37)

Finally the state |0, 0� must be the state with one spin up and one spin down that is
orthogonal to |1, 0� (since they have a different eigenvalue).

|0, 0� =
1
√
2

�
|↑, ↓� − |↓, ↑�

�
. (9.38)

This steps can be repeated in the case of general spins and yield to the result summarized
above.

9.3.1 Examples and exercises.

Exercises.

• Consider a composite system with two particle of spin s1 and s2 respectively. What
is the dimension of the Hilbert space describing the spin degrees of freedom?

• Both the proton and the electron have spin 1/2. Is the hydrogen atom a boson or
a fermion ?

Legenda:

≡ “equivalent by definition”

∃ “exists at least one”

∃! “exists just one”

∀ “for all”

∈ “belongs to”

C the set of complex numbers

N the set of positive integer numbers

R the set of real numbers

Z the set of integer numbers

⊆ is contained in


