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This means that, if we find an observable Â that commute with the Hamiltonian
([Â, Ĥ]), then we can simplify the eigenvalue equation Ĥ|ψE� = E|ψE�, by looking for
the eigenvectors of Ĥ in each eigenspace of Â.

5.1 A free particle

Consider a massive particle that is free to move in one dimension. You are familiar with
the quantum mechanical description of such system in terms of a (wave)function ψ(x, t)
and the Schroedinger equation

−
�2
2m

∂2

∂x2
ψ(x, t) = i� ∂

∂t
ψ(x, t) . (5.2)

We can now see how this system fits the general framework described in the previous
lectures: ψ(x, t) is an element of a Hilbert space F of functions (see the comment below if
you are interested to know more about F) with the scalar product defined in (2.6). The
Hamiltonian is defined as

Ĥ = −
�2
2m

∂2

∂x2
. (5.3)

Let us re-interpret this description in terms of an abstract Hilbert space, where we
have a position and a momentum operator satisfying

[x̂, p̂] ≡ x̂ p̂− p̂ x̂ = i� . (5.4)

We use the symbol |x0� to indicate the “generalized” eigenvectors of the position operator
x̂ and |ψ� to indicate the ket representing the state of our system. The usual wavefunction
represents nothing else than the coordinates of |ψ� along the basis |x0�

ψ(x0) ≡ �x0|ψ� . (5.5)

In this basis we have

• The position operator x̂ is represented by the standard multiplication, that is the
action of x̂ on the vector |ψ� correspond to multiply the wavefunction by x.

• Then from (5.4) we see the the momentum operator is p̂ = −i� ∂

∂x
.

• |x0� is represented by δ(x− x0) (notice that this satisfies the normalization (3.8)).

Another very convenient basis is given by the (generalized) momentum eigenvectors |p0�.
We know that in the position basis (that is when p̂ = −i� ∂

∂x
) we have

�x|p0� =
1

√
2π�

e
i

�p0x . (5.6)
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The factors in front has been chosen in order to satisfy the normalization condition (3.8).
From (5.6) we see that the change from the coordinate basis to the momentum basis is
nothing else but the Fourier transformation

ψ(x0) =

� ∞

−∞
�x0|p0��p0|ψ�dp0 =

� ∞

−∞
e

i

�p0x0ψ(p0)
dp0

√
2π�

, (5.7)

where we have defined �p0|ψ� ≡ ψ(p0). The inverse relation expressing ψ(p0) in terms of
ψ(x0) is simply

ψ(p0) =

� ∞

−∞
�p0|x0��x0|ψ�dx0 =

� ∞

−∞
e

−i

� p0x0ψ(x0)
dx0
√
2π�

. (5.8)

For the free particle the momentum basis is convenient because we know that the free
Hamiltonian is Ĥ = p̂

2

2m and this implies that Ĥ and p̂ commute

[Ĥ, p̂] = 0 . (5.9)

Thus the eigenvectors (5.6) of p̂ are also eigenvectors of Ĥ. Thus we can now write the
time evolution of a generic vector |ψ(t0)�. We first write the state in the momentum basis
and then use (5.1) to obtain

|ψ(t)� =

� ∞

−∞
e−

ip
2

2m� (t−t0)ψ(p, t0) |p�dp (5.10)

Subtlety: The precise definition of F is subtle somewhat subtle. Of course the func-
tions in F must be square integrable (the norm of the wavefunction should be finite) and,
in order to show that this is really a Hilbert space, one needs to Lebesgue approach to
defining the integrals. Moreover, consider two functions differ only in one point

f(x) =
1

1 + x2
, g(x) =

�
1

1+x2 if x �= 0

0 if x = 0
(5.11)

Clearly we want to say that these two functions represent the same physical state, even
if strictly speaking they are not equal. The “easiest” characterisation of F is to start
with the vector space discussed in the example 2.2.1 of week 2 notes and consider its
completion8. Mathematicians refer to this Hilbert space as L2(−∞,∞).

8This means that we add a new element to the vector space for each different Cauchy sequence which
had no limit in the original vector space; in this way the requirement 2 in the definition of a Hilbert space
is satisfied by construction.
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5.1.1 Examples and exercises.

• Heisenberg uncertainty principle: by the triangular inequality and the commutation
relation (5.4), we can derive Heisenberg’s uncertainty principle. Let us suppose that
the system (a massive particle in our case) is described by a |ψ�. We can define the
uncertainty on the measure of x̂ and p̂ has follows

(∆x)2 = �ψ|(x̂− xa)
2
|ψ� , (∆p)2 = �ψ|(p̂− pa)

2
|ψ� , (5.12)

where xa (pa) are the average values of the position (momentum): xa = �ψ|x̂|ψ�.
We can see that [(x̂ − xa), (p̂ − pa)] = [x̂, p̂]. Thus by using (5.4) we see that
�ψ|[(x̂− xa), (p̂− pa)]ψ� = i�. Then

�2 = |[(x̂− xa), (p̂− pa)]ψ�|
2 = |�(x̂− xa)ψ|(p̂− pa)ψ� − �(p̂− pa)ψ|(x̂− xa)ψ�|

2

≤ |2�(x̂− xa)ψ|(p̂− pa)ψ�|
2
≤ 4||(x̂− xa)|ψ�||

2
||(p̂− pa)|ψ�||

2 . (5.13)

where in the last step I used Schwarz inequality (1.6).

• Consider a free particle of massm. If a certain instant (t = 0) the particle is detected
in x = 0 with an experimental uncertainty a. What’s the probability of finding this
particle at a distance at least y from the origin at the time t? The approach you
are probably familiar with is to write down Eq. (5.2) and try to find a solution for
which9

ψ(x, t = 0) =

�
2

πa2

� 1
4

e−
x
2

a2 . (5.14)

(recall postulate 5!). The approach described in this paragraph suggests to use the
momentum basis. In this basis we have

ψ(p, t = 0) =

� ∞

−∞
�p|x��x|p�dx =

�
2

πa2

� 1
4
� ∞

−∞
e−

x
2

a2
− i

�px
dx

√
2π�

=

�
a2

2πh2

� 1
4

e−
a
2
p
2

4�2 . (5.15)

Thus the evolved wavefunction in momentum space is

ψ(p, t) =

�
a2

2πh2

� 1
4

e−
ip

2
t

2m�−
a
2
p
2

4�2 (5.16)

Now we can go back to position space where it is easier to compute the probability
requested by the problem

ψ(x, t) =
�
2πa2

� 1
4

� ∞

−∞
exp

�
−

ip2t

2m� −
a2p2

4�2 +
ipx

�

�
dp

2π� . (5.17)

9As usual, one can choose the overall constant A to work with a state of norm one: A = (2π)1/4
√
a.
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This is again a Gaussian integral and can be explicitly evaluated to find the wavefunction
in the standard position space. The result takes exactly the same form of the t = 0
wavefunction (5.14), just with a time depedent parameter a!

ψ(x, t) =

�
2f(t)

πa2

� 1
4

e−f(t)x
2

a2 , (5.18)

where f(t) is a complex number and can be written as the product of its norm and phase
or as the sum of the real and imaginary parts

f(t) =
1

1 + 2i�t
a2m

=
eiθ(t)�
1 + 4�2t2

a4m2

=
1− 2m�it

a2m2

1 + 4�2t2
a4m2

. (5.19)

So finally we can write the wavefunction at the time t and, in order to keep it as simple
as possible, we summarize the overall phase in exp(iΘ(t))

ψ(x, t) =

�
2f(t)

πa2

� 1
4

ei
2m�it
a2m2

x
2

a2 exp

�
−

x2

a2(1 + 4�2t2
a2m2 )

�
. (5.20)

Notice that the probability density in position space is a Gaussian with a time dependent
width

a(t) =
a�
|f(t)|

= a

�
1 +

4�2t2
a4m2

. (5.21)

So the uncertainty on the position of the particle increases over time. Since the average
position is zero, we have

∆x2 =

� ∞

−∞
x2
|ψ(x, t)|2dx =

a2

4

�
1 +

4�2t2
a4m2

�
(5.22)

However the uncertainty over the momentum is constant! This is not immeaditely evident
if we use the standard formulation

∆p2 =

� ∞

−∞
ψ(x, t)∗(−�2)d

2ψ(x, t)

dx2
dx =

�2
a2

, (5.23)

but it is obvious if we use ψ(p, t) in (5.16)

∆p2 =

� ∞

−∞
p2|ψ(p, t)|2dp =

� ∞

−∞
p2|ψ(p, t = 0)|2dp =

�2
a2

. (5.24)

Exercise. Consider a particle of mass m that is constrained to be in a 1-dimensional box
of size 2a, but that otherwise is free. For sake of concreteness, we will parametrize the
box with −a < x < a.
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• Find the eigenvectors and the eigenvalues of the Hamiltonian describing this system.

• At the time t = 0, the particle is described by the wavefunction ψ(t = 0) which is in
the positive half of the box (0 < x < a) with equal probability of being in any point
of that part of the box. What is the probability of finding, in a physical measurement
at the time t = 0, the lowest possible eigenvalue of the energy operator?

• Consider again the wavefunction ψ(t = 0) described above: calculate the wavefunc-
tion at the time t supposing that it evolves freely (that is without any external
perturbation).

• What is the probability of finding the particle in the negative half of the box at the
time t?

• What is the probability of finding, in a physical measurement at the time t, the low-
est possible eigenvalue of the energy operator? What is the wavefunction describing
the particle after this measurement?

5.2 The harmonic oscillator.

A particle of mass m moves in 1-dimension with a potential U(x) = 1
2kx

2. The classical
trajectory is an oscillatory motion with frequency ω

x(t) = A cos(ωt+ φ) , with ω =

�
k

m
, (5.25)

where φ is an arbitrary constant that we can set to zero by choosing an appropriate initial
time t = 0 and A is the amplitude of the oscillation.

Quantum mechanically we know that the harmonic oscillator cannot have zero total
energy, as this would violate Heisenberg’s uncertainty principle. The state with minimal
energy is called ground state and has energy E0 = �ω/2. Then we have an infinite set of
excited states with energies En = �ω(n + 1/2). Let us derive these results by using an
abstract operator description. The Hamiltonian of the system is

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 (5.26)

and we want to find the eigenvectors of Ĥ. The easiest approach is to consider the
operators

â =

�
mω

2� x̂+ i

�
1

2m�ω p̂ , â† =

�
mω

2� x̂− i

�
1

2m�ω p̂ . (5.27)
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We can invert these relation and write the operators x̂, p̂ in terms of the lowering and
raising operators

x̂ =

�
�

2mω

�
â+ â†

�
, p̂ = −i

�
m�ω
2

�
â− â†

�
(5.28)

In terms of the raising/lower operators the canonical commutation relations [x̂, p̂] = i�
and the Hamiltonian (5.26) read

[â, â†] = 1 , Ĥ = �ω
�
â†â+

1

2

�
(5.29)

From this equation we immediately see that all energy eigenvalues must be positive.
Suppose that |φ� is an eigenvector of norm one and eigenvalue λ, then

λ = �φ|Ĥ|φ� = �ω
�
�âφ|âφ�+

1

2

�
> 0 . (5.30)

An explicit realisation of the commutation relations in Eq. (5.29) is to think about the
operators â and â† as acting on the space of polynomials P (a) with complex coefficients:
â is identified with the derivative d

da
and so it lowers the degree of the polynomial by

one, while â† is identified with the multiplication by a and so raised the degree of the
polynomial by one. We can easily check that this identification is consinsten with the
commutation relation

[â, â†]|v� = |v� ⇔
d

da
(aP (a))− a

d

da
(P (a)) = P (a) . (5.31)

Then we need to define a scalar product on the space of polynomial such that the â
and â† are actually one the adjoint of the other. Clearly this has to exchange the role of
the multiplication by a and the derivative with the respect to a. So if each ket-vector is
represented by standard polynomials (for instance |P � = a2 + i), the corresponding bra-
vector is represented by the same polynomial where each a is substituted with a derivative
and the new coefficients are the complex conjugate of the original one (�P | = d

2

da2
−i). The

action of any bra on a vector is obtained simply be computing the action of the derivatives
on the polynomial and then setting a to zero. So for instance, the scalar product of |P �

and |Q� = a+ 1 is

�P |Q� =

��
d2

da2
− i

�
(a+ 1)

�

a=0

=

�
d2a

da2
+

d21

da2
− ia− i

�

a=0

= −i . (5.32)

Now it is straightforward to check that the polynomial of degree zero |0� is the eigen-
state of Ĥ with minimal eigenvalue. In order for this to happen the first term on the right
hand side of (5.30) should minimal possible value, i.e. zero:

â|0� =

�
d

da
P (a)

�

a=0

= 0 ⇒ P (a) = const , (5.33)
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and so the corresponding eigenvalue of the harmonic oscillator Hamiltonian is �ω/2. By
using the scalar product defined above we immediately see that the ground state as defined
is normalised to one if we take P (a) = 1. Then it is clear that any other monomial
|n� = Cnan is an eigenstate of the Hamiltonian in (5.29)

â†â|n� = a
d

da
Cna

n = nCna
n , (5.34)

which implies that the corresponding eigenvalue for Ĥ is

λn = �ω
�
n+

1

2

�
.

Again it is easy to fix the normalisation Cn by requiring

�n|n� ⇔ |Cn|
2

�
dn

dan
an
�

a=0

= n!|Cn|
2 , (5.35)

which implies Cn = 1/
√
n!. Thus we can summarise the spectrum of Ĥ by writing

|n� =
1

√
n!

�
â†
�n

|0� . (5.36)

We saw that the operators operators â and â† lower/raise the energy level of an eigenstate
of the Hamiltonian and that the normalised eigenvectors are related by

â|n� =
√
n|n− 1� and â†|n� =

√
n+ 1|n+ 1� . (5.37)

Finally a remark on the structure of the space of the possible states for the harmonic os-
cillator: the space of polynomials with the scalar product defined in (5.32) is not a Hilbert
space, because it does not meet the second requirement listed at the end of Section 1.
Thus we need to consider its completion, that is series, and not just polynomials, in a
whose coefficients are square summable. So the full space of states is isomorphic to l2 as
deined in Section 1.

5.3 Connection with the usual wavefunctions.

Let us see that there is just a single state satisfying this condition. In order to do this,
it is convenient to go back to the position space description ψ0(x) ≡ �x|0�, where the
condition (5.33) reads as

��
mω

2� x+ �
�

1

2m�ω
d

dx

�
ψ0(x) = 0 . (5.38)
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This is a first order differential equation which has only one solution

ψ0(x) = A exp

�
−
1

2

mω

� x2

�
. (5.39)

As usual, it is convenient to fix the overall normalization by requiring that the eigenstate
has norm one, which implies

A =
�mω

π�

� 1
4
. (5.40)

We can now use again the commutation relation (5.29) and build the entire spectrum
of the harmonic oscillators (that is all the eigenvectors of Ĥ) from the ground state by
acting with â†:

â|0� = 0 ⇒ N̂
�
â†
�n

|0� = n
�
â†
�n

|0� . (5.41)

This means that
�
â†
�n

|0� is proportional to |n�; in particular, if we want to keep working
with orthonormal eigenstates, we have

5.3.1 Examples and exercises.

Semiclassical states. The quantum mechanical energy eigenstates of the harmonic oscilla-
tor seems to be rather different from classic trajectories derived in (5.25). We would like
to find a quantum mechanical state describing a motion that is very close to the classical
one. In particular, we would like to find a state |α� for which the average value of the
position operator:

�α|x̂|α� = A cos(ωt+ φ) =
1

2

�
Aeiφeiωt + Ae−iφe−iωt

�
. (5.42)

By using (5.28), we can rewrite Eq. (5.42) as

�α|x̂|α� =

�
�

2mω
�α|âα�+

�
�

2mω
�α|â†α� . (5.43)

Clearly if we can find a ket that is an eigenstate of â of eigenvalue

α =

�
mω

2� Ae−iφ ,

then (5.42) at t = 0 would follow. So let us look for a state |α� satisfying

â|α� = α|α� . (5.44)

We can use the explicit realisation of the raising and lowering operators in (5.31) and
transform (5.44) in a simple differential equation

d

da
f(a) = αf(a) ⇒ f(a) = Aeαa . (5.45)
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This function is not a polynomial, but can be approximated arbitrary well by a Cauchy
series of polynomials, so it is part of the l2 space describing the Harmonic oscillator states.
Thus, in abstract terms, we see that the eigenstates we are looking for are

|α� = Aeαâ
†
|0� . (5.46)

These states are called coherent states and the average value for the position operator x̂
when the state of the particle is described by the coherent state α agrees with (5.42) for
any t. We can check this explicitly by evolving |α� at a generic time

|α, t� = e−
i

�Ht
|α� =

∞�

n=1

e−iωt(n+ 1
2 )

αn

√
n!
|n� . (5.47)

�α, t|x̂|α, t� = |A|
2

�
�

2mω

∞�

n,k=1

ᾱkαn

√
k!n!

�
eiωt(k−n)

�k|a|n�+ eiωt(k−n)
�k|a†|n�

�

=
1

2

�
Aeiφeiωt + Ae−iφe−iωt

�
. (5.48)

The second line follows from the first one by using (5.37), the result of the exrcise below
for A and �k|n� = δkn (recall that eigenstates with different eigenvalues are orthogonal).

Observation. There is a simpler way to derive (5.48) from (5.43). Suggestion: try to
calculate the time derivative of �α, t|x̂|α, t� by using (5.1).

Exercises.

• Normalize to one the coherent states (5.46).

• Consider a charged harmonic oscillator in a uniform constant electric field. Write
the Hamiltonian and find the eigenvalues.

6 Perturbation theory.

We saw that finding the complete set of eigenvectors of the Hamiltonian is the key point
to solve the dynamics of a physical system. Unfortunately it is often very difficult to solve
exactly this problem. By now you have already seen the important situations where we
can find all solutions to the eigenvector equation H|ψ� = E|ψ�

• The free particle and some simple variation where the potential is piecewise constant.

• The harmonic oscillator.


