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Instruction on how to use these notes.

These notes must be used with care: they are preliminary and their aim is just to provide
a concise summary of the topics covered during the lectures. Only few detailed step-by-
step derivations are included and the general approach is to explain the general concepts
through examples.

Please try to complement these notes by reading the relevant parts of a Quantum
Mechanics book such as

• Modern quantum mechanics J.J. Sakurai. QM Library: QC174.1 SAK

• Quantum mechanics Cohen-Tannoudj, Diu, Laloe. QM Library: QC174.1 COH

The parts written in small fonts lie outside the main syllabus of the course: they are
not strictly necessary for the rest of the material presented nor will appear in the exam
paper – these parts are included just for your own curiosity.

Please let me know if you have any question regarding these notes, spot

typos or mistakes.
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1 Some useful algebraic structures.

1.1 Groups.

A group is a set of elements G together with an operation • that combines any two
elements and gives another element of the group.

• Closure: ∀ a, b ∈ G, a • b ∈ G.

• Associativity: ∀ a, b, c ∈ G, (a • b) • c = a • (b • c).

• Existence of the identity element: ∃ e ∈ G such that, ∀ a ∈ G, a • e = e • a = a

• Existence of the inverse: ∀ a ∈ G , ∃ b ∈ G such that a • b = b • a = e.

The concept of group is particularly important in physics because the set of symmetries
of a physical system is a group. In this case the product of two elements consists just in
performing the two symmetry operation in sequence: the result is a possibly new operation
that leaves the system invariant.

1.1.1 Examples and exercises.

• The set of integer numbers Z (that is . . . ,−2,−1, 0, 1, 2, . . .), together with the
standard addition form a group (Z,+)

This group enjoys an additional property, that is the operation is commutative: ∀ a, b ∈ Z

we have a+ b = b+ a. This type of groups is called Abelian.

• Consider an equilateral triangle: a rotation by 120 degrees (2π/3 radians) around
the center of the triangle leaves the object invariant.

Notice that these operations are not the only symmetries of the triangle! We can perform
also reflection along the three altitudes and leave the triangle unchanged. The group
generated by all symmetries is called D3 (it’s one of the Dihedral groups). This group
contains a finite number of elements and is not Abelian (non-Abelian). See exercise below.

• Consider a sphere: any rotation around an axis passing through the origin of the
sphere leaves the sphere unchanged. The set of all these rotations forms a group
that we will analyze in some detail in this course.

This group contains an infinite numbers of elements, since the angle of the rotation is a
continuous parameter. As we will see this group is non-Abelian.
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Exercise: Consider the group D3. This group is generated by the following two
operations:

A

B

C

R1

A

B

C

S0

A

CB

⇒

⇒

A

BC

1. Compose these two symmetries in all possible ways and write down all elements of
D3. How many elements are contained in D3 ?

2. Write down all possible products between two elements in D3 and prove that the
group is non-Abelian.

1.2 Vector spaces.

A vector space is a set of elements that can be summed and rescaled: it represents an
abstraction of the usual Euclidean space. To be precise, a real vector space V is an Abelian
group with respects to the addition; moreover each element of v ∈ V can be multiplied
(rescaled) by a real number a and av ∈ V . This scalar multiplication must have the
following properties:
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• Distributivity with respect to the vector addition: ∀ a ∈ R and ∀ v, w ∈ V we have
a(v + w) = av + aw;

• Distributivity with respect to the real number addition: ∀ a, b ∈ R and ∀ v ∈ V
we have (a+ b)v = av + bv;

• ∀ a, b ∈ R and ∀ v ∈ V we have a(bv) = (ab)v;

• Multiplication by the identity and zero: ∀ v ∈ V we have 1v = v and 0v = 0.

A complex vector space is defined in a similar way just by allowing rescaling of the vectors
with complex, instead of real numbers. Then in the axioms above a, b will belong to C.

Vector spaces play a central role in physics. In classical mechanics the position of a
point-particle is specified by a vector in the Euclidean space. In Quantum mechanics the
state of a system is specified by the wavefunction which, as we will see, is an element in
a complex vector space.

Let me now recall the concept of linearly independent vectors

• A set of vectors {v1, v2, . . . , vm} is linearly independent if a1v1 + . . . + amvm = 0
(with ai ∈ R for real vector spaces, while ai ∈ C for complex spaces) implies that
a1 = . . . = am = 0.

• If it exists a maximum number of linearly independent vectors n, then n is the
dimension of the vector space. A set of n linearly independent vectors is called
basis.

This implies that a vector space V of dimension n can be “represented”1 as the Euclidean
space (Rn for real vector spaces andC

n for complex ones). Consider a basis {v1, v2, . . . , vn}
for this space; then we have the following

Theorem: each vector v ∈ V has a unique decomposition in terms of {v1, v2, . . . , vn}

v = a1v1 + . . .+ anvn . (1.1)

Proof “by contradiction”. Suppose that there are two different such decompositions:
v =

�
n

i=1 aivi and v =
�

n

i=1 bivi with ai �= bi at least for one value of i. Then we can
take the difference between these two decompositions and get: 0 =

�
n

i=1(ai − bi)vi. This
contradicts the hypothesis that {v1, v2, . . . , vn} forms a basis. The n numbers ai are called
coordinates of v in the basis {v1, v2, . . . , vn}.

1We will see next week what this means exactly.
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1.2.1 Examples and exercises.

• The 2-dimensional Euclidean space is the standard example of a vector space.

y

x

The 2-dimensional Euclidean space: the elements of this
real vector space are arrows on a plane whose length can
be rescaled and that can be summed in the usual way.

Exercises:
1) Consider the set of polynomial with real coefficients of degree 2: 3x+4 and x2+

√
2

are examples of such polynomials and
�2

i=0 aix
i ≡ a2x2 + a1x + a0 with ai ∈ R is the

most general element.

• Show that this set forms a vector space with the standard addition between polyno-
mial and with the scalar multiplication with any real number b defined as: b(

�2
i=0 aix

i) =�2
i=0(bai)x

i.

• What is the dimension of this vector space ?

2) Consider the following pairs of vectors in C
3:

a) v =




1
2
3



 , w =




4
5
6



 ; (1.2)

b) v =




1
1
2



 , w =




2
2
4



 ; (1.3)

c) v =




1
i
−i



 , w =




i
−1
1



 . (1.4)

Check whether these pairs of vectors linearly are linearly independent.

1.3 Scalar products and Hilbert Spaces.

We are interested in vector spaces that have an additional structure: a scalar product

(sometimes I will use the equivalent denomination “inner product”). The inner product
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is a bilinear map from V ×V → R (V ×V → C for complex vector spaces). Let me focus
on the complex case:

• linearity: ∀ ai ∈ C and ∀ w, vi ∈ V we have (w, a1v1 + a2v2) = a1(w, v1) + a2(w, v2)
and (a1v1 + a2v2, w) = ā1(v1, w) + ā2(v2, w)

• conjugation symmetry: ∀ w, v ∈ V we have (w, v) = (v, w).

Notice that this last property implies that (v, v) ∈ R ∀ v ∈ V . Then it makes sense to
require that

• ∀ v �= 0 in V we have (v, v) > 0

When this additional property is satisfied the scalar product is said to be positive definite.
The scalar product of a vector with itself is called norm: ||v||2 ≡ (v, v). In our applications
to Quantum Mechanics we will be focusing on positive definite scalar products. On the
contrary, for instance in special relativity one deals with a vector space with a non-positive
definite scalar product.

Some useful definitions and properties:

• If two vectors v1, v2 have vanishing scalar product (v1, v2) = 0, then they are said
to be orthogonal.

• An orthogonal basis for V is a basis {v1, v2, . . .} for which (vi, vj) = 0 ∀i �= j. If in
addition we have (vi, vi) = 1 ∀i, then the basis is called orthonormal. In symbols
we have (vi, vj) = δij, where δij is the Kronecker delta: δij = 1 if i = j and δij = 0
otherwise.

• The decomposition (1.1) of any vector in terms of an orthonormal basis is given by

v =
�

(vi, v)vi ⇒ ai = (vi, v) . (1.5)

Theorem (Schwarz inequality). Take any two vectors v1, v2 of a Hilbert space. Then
we have

|(v1, v2)|
2
≤ ||v1||

2
||v2||

2 . (1.6)

Proof: Consider the vector w = v1 + av2, where a is an arbitrary complex (real) number.
Then we have ||w||2 ≥ 0, which implies

0 ≤ ||w||2 = (v1, v1) + |a|2(v2, v2) + a(v1, v2) + ā(v2, v1) . (1.7)

Now we can take

a = −
(v2, v1)

(v2, v2)
. (1.8)
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In this case the last two terms of (1.7) become equal and opposite to the second one.
Then we can immediately see that (1.7) reduces to (1.6).

Roughly speaking, a Hilbert space is a vector space with a positive definite inner
product.

If the vector space is infinite dimensional, we also require that:

1. The norm of each vector is finite: ∀ v we have (v, v) < ∞.

2. Any Cauchy sequence of vectors has a limit vector in V . A sequence of vectors vk with k = 1, 2, . . . is
Cauchy if ||vm−vn||2 becomes arbitrary small when m,n are big. In formal terms: ∀ � > 0 ∃ k ∈ N
such that ∀ m,n > k we have ||vm − vn||2 < �. Spaces satisfying this condition are said to be
Cauchy complete.

In order to appreciate the meaning of the Cauchy completeness, let us apply to the case of the
set of numbers, which is simpler than an infinite dimensional vector space, but still capture the
essence of this requirement. Consider the set of rational numbers, i.e. the number that can be
expressed as ratio of two integers. You can prove (by contradiction) that

√
2 is not a rational

number. However it is easy to find a sequence of rational number that are closer and closer to
√
2.

Consider, for instance, the binomial expansion of

2

�
1−

1

2
= lim

N→∞
2

�
1−

N�

n=1

cn
n!

�
1

2

�n
�

where c1 = 1
2 and cn = (1)(3)...(2n−3)

2n for n > 1. If we take a large, but fixed N , the r.h.s. is
rational, as it is a sum of rational numbers. Choosing bigger values of N makes the sum closer
to

√
2, so the sequence of numbers labelled by N is Cauchy. However its limit is

√
2 and thus it

is outside the space of rational number. So the space of rational number is not Cauchy complete
and to satisfy this requirement we need to consider real numbers. Hilbert spaces share the same
Cauchy completeness property of real numbers.

3. The space has a countable orthonormal basis. Hilbert spaces satisfying this requirement are often
called separable. Mathematicians consider also non-separable Hilbert spaces which satisfy the
first two requirements, but not the last one; these non-separable spaces do not arise in Quantum
Mechanics and so we will ignore them .

1.3.1 Examples and exercises.

• Consider the infinite dimensional generalization of the vectors in C
3, that is the vec-

tors v are just infinite arrays of complex numbers: v = (v1, v2, v3, v4, . . .). The scalar
product between two vectors of this kind is defined to be (w, v) =

�∞
k=1 w̄kvk. Thus

in order to satisfy property 1, we focus only on the vectors for which
�∞

k=1 |v|
2
k
< ∞.

One can show that this set of vectors forms a Hilbert space (that is property 2 and
3 are satisfied). This Hilbert space is usually named l2.

Exercise: Consider an set {v1, v2, . . .} of orthogonal vectors. Show that these
vectors are linearly independent.
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2 Linear maps.

2.1 Functions between two sets.

A function between two sets (f : A → B) is a map that associates each element of the
first set (A) one element of the second set (B).

In a formal language: ∀ a ∈ A ∃! b ∈ B such that f(a) = b. Some definitions:

• A function f : A → B is said surjective (or “onto”) if all elements of B are images of some element
in A: ∀ b ∈ B ∃a ∈ A such that f(a) = b

• A function f : A → B is said injective if any two elements in A have different images in B:
∀ a1, a2 ∈ A f(a1) = f(a2) implies a1 = a2.

• a function is bijective if it is both surjective and injective.

2.1.1 Examples.

α

γ

β

A B

1

2

α

γ

β

A B

1

2

3

This is a function. This is not a function

α

γ

β

A B

1

2

3

This function is bijective.

α

γ

β

A B

1

2

This is not a function

2.2 Linear functionals and Dirac’s notation.

From now on we will very often indicate the vectors of an abstract vector space by using
Dirac’s notation |ψ� (ket vector). Depending on the type of the vector space V one is
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considering |v� can be a n-tuple of number, a polynomial or an element of l2 (see the
example in the previous Section). This notation is useful when one considers the dual
space of linear functionals.

A linear functional is a function χ between a real (complex) vector space V and the
real (complex) numbers which has the following property

• ∀ |ψ1�, |ψ2� ∈ V and ∀ a, b ∈ R (C) we have χ(a|ψ1�+b|ψ2�) = aχ(|ψ1�)+bχ(|ψ2�).

The dual space V ∗ is the set of all possible linear functionals. In the Dirac’s notation each
linear functional is represented by a �χ| (bra vector).

To every ket corresponds a bra. In a vector space with a scalar product, it is easy to
define a function that maps the vectors of V into elements of V ∗. For each |φ� ∈ V consider
the scalar product between |φ� and any other element of V . This is a linear functional
mapping V in R (C) that is completely specified by |φ�. Thus we can represent this linear
functional with �φ|

(|φ�, |ψ�) ≡ �φ|ψ� . (2.1)

From now on we will often indicate the scalar products between two vectors by using
Dirac’s notation, that is by using the left hand side of Eq. (2.1). Let us recall the main
properties of the scalar product

�φ|χ� = �χ|φ� , (2.2)

�φ|a1χ1 + a2χ2� = a1�φ|χ1�+ a2�φ|χ2� ,

�a1φ1 + a2φ2|χ� = ā1�φ1|χ�+ ā2�φ2|χ� ,

�χ|χ� > 0 , ∀ |χ� �= 0 .

The correspondence between ket and bra vectors is antilinear: if the bra vectors cor-
responding to |ψ1� and |ψ2� are �ψ1| and �ψ2|, then the bra vector corresponding to
a1|ψ1�+ a2|ψ2� is ā1�ψ1|+ ā2�ψ2|

a1|ψ1�+ a2|ψ2� ⇒ ā1�ψ1|+ ā2�ψ2| . (2.3)

Question: Is there a ket corresponding to every bra?
The answer is yes for finite dimensional vector spaces with a scalar product, while for
infinite dimensional spaces the situation is subtler.

Let us first focus on the simple finite dimensional case. We can choose an orthonormal
basis {|ψ1�, |ψ2�, . . . , |ψn�} which means that we have �ψj|ψi� = δij. For each linear
functional �χ| we can build a vector as follows

n�

i=1

�χ|ψi� |ψi� ≡ |χ� . (2.4)
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Notice that the bra associated to ket just defined in (2.4) is the original linear functional
�χ|, as it can be seen by using (2.1). Proof: take any vector |φ�, this can be decomposed
in a unique way on the basis |ψi� (|φ� =

�
ci|ψi�); then the bra associated to |χ� acts as

follow

(|χ�, |φ�) =
n�

i=1

�χ|ψi� (|ψi�, |φ�) =
n�

i,j=1

�χ|ψi�δijcj = �χ|φ� . (2.5)

Now the question is: what can go wrong in the case of an infinite dimensional vector
space V ? In this case the sum in (2.4) becomes an infinite series and the problem is
that this series might not have a limit in V even if it is a combination of vectors in V .
It is possible to construct an explicit example of such a situation in the case V is not a
Hilbert space and in particular does not satisfy the second requirement in the previous
notes. This example is important for our applications to Quantum Mechanics (see below
the example about Dirac’s delta for some more details).

2.2.1 Examples and exercises.

• Bra for finite dimensional Hilbert spaces.

Consider the space C3: the element of this space are just column vectors with a triplet of
complex numbers (see for instance 1.2). We use the standard scalar product

(|v�, |w�) ≡ v̄1w1 + v̄2w2 + v̄3w3 =
�
v̄1 v̄2 v̄3

�



w1

w2

w3



 . (2.6)

Then, by using Eq. (2.1), it is clear that the bra corresponding to the vector |v� is simply
the row-vector

�
v̄1 v̄2 v̄3

�
.

• Dirac’s delta.

Consider the space of the following “nice” function f : R → C: f is infinitely differentiable
and goes to zero very quickly2 as |x| → ∞. This set of functions form a complex vector
space3 Vf with scalar product defined as

� ∞

−∞
ḡ(x)f(x)dx . (2.7)

2∀ n,m = 1, 2, . . . we have |xndmf/dxm| → 0 as |x| → ∞.
3See the exercise below.
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Consider the mapping f(x) → f(x = 0). This is a linear functional4 that we will call �δ0|.
We can represent this functional by using the scalar product (2.7) and the Dirac’s delta

�δ0|f� ≡

� ∞

−∞
δ(x)f(x)dx = f(0) . (2.8)

Notice that there is no standard function g for which
�∞
−∞ ḡ(x)f(x) = f(0) for any f(x) ∈

Vf . This shows that this linear functional cannot be represented by the scalar product of
an element in V , but requires a new object (the Dirac’s delta in this case).

Exercise

• Prove the statement: Vf is a vector space.

• Prove the statement: �δ0| is a linear functional.

* Show explicitly that Vf is not a Hilbert space.

2.3 Linear operators.

Consider two vector spaces V and W (they are not necessarily different, we can have
V = W ). A linear operator is a function A from V to W satisfying

• ∀|χi� ∈ V we have A(|a1χ1 + a2χ2�) = a1A(|χ1�) + a2A(|χ2�) ∈ V �

In the case V = W we can define the product of two operators in a simple way just by
acting on the vectors in an ordered way:

∀ χ ∈ V AB(|χ�) ≡ A
�
B(|χ�)

�
.

Any real (complex) finite dimensional vector space V is isomorphic to R
n (Cn). This

means that there is a injective linear map between V and R
n (or Cn).

In order to see this let us take a basis for V : {|v1�, . . . , |vn�}. Then any vector |v� ∈ V
can be decomposed along this basis

|v� =
�

i

ci|vi� ⇒





c1

c2

...
cn




↔ |v� , (2.9)

where ci are the coordinates5. Thus we can associate to any |v� ∈ V a unique n-tuple
of numbers; vice-versa to any n-tuple of numbers we can associate a vector simply be

4See the exercise below.
5As a notation, from now on we will use upper indices for the vector coordinates; you will see why

this is convenient.
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reading (2.9) in the opposite sense. Thus the map is injective. In order to complete the
proof that this is an isomorphism between V and R

n (or Cn), see the first exercise below.

2.3.1 Examples and exercises.

• In the case of finite dimensional vector spaces, any linear operator A : V → V � can
be represented by a matrix.

In order to see this let us take a basis for V {|v1�, . . . , |vn�} and one forW {|w1�, . . . , |wm�}.
Then we have

A|v� =
n�

i=1

ciA|vi� . (2.10)

Now let us focus on each A|vi�: these vectors belong to W so they can be decomposed
along the |wj� basis

A|vi� =
m�

j=1

|wj�a
j

i
⇒ A|v� =

n�

i=1

m�

j=1

aj
i
ci |wj� . (2.11)

By using the isomorphism introduced above, we can

- represent the kets |v� ∈ V as column vectors with n numbers,

- represent the kets |W � ∈ W as column vectors with m numbers,

- represent the linear operator Â as the matrix aj
i

Â ↔ aj
i
≡ �vj|Â|vi�

where j is the row index and i is the column index.

• A projector is a linear operator P from a vector space V to itself (P : V → V )
such that P 2 = P . This definition generalized to an abstract vector space the idea
of projection in the standard Euclidean space. Dirac’s notation provides a simple
way to write projectors in a simple way. Consider a vector with norm 1: |v� and
consider also the associated bra �v|. We can define a projector Pv ≡ |v��v| which
acts as follow

∀ |w� ∈ V Pv|w� ≡ (�v|w�) |v� . (2.12)

This is a projector since P 2
v
= |v��v|v��v| = Pv. If you take V to be, for instance,

the standard 2-dimensional vector space and |v� to be the versor along the x-axis,
then you can see that (2.12) is indeed the projection on this axis.
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It is straightforward to generalize (2.12) when you deal with more vectors: if you have a
set of orthonormal vectors {|v1�, . . . , |vm�}, then you can define a projector on the plane
generated by these vectors as follow

Pm =
m�

i=1

|vi��vi| . (2.13)

Exercise

1) Prove that the map in (2.9) is linear.

2) Consider a set of orthonormal vectors |v1�, . . . that forms a basis for V . Prove that
the associated projector, as in (2.13), is the identity operator: P = 1.

3) Consider a finite dimensional complex Hilbert space and the isomorphism (2.9) with
C

n. Derive how the scalar product between two vectors |v� and |w� is written in
terms of their coordinates.

2.3.2 Action of a linear operator on a bra.

So far we have discussed the action of linear operators on the kets in a vector space V .
Let us focus on operators from V to V . By using the scalar product, it is simple to define
an action also on the linear functionals (that is the bras). Consider a linear operator A,
then for any bra �φ| we can associate a new bra �φ�| defined as follow

∀ |ψ� ∈ V �φ�
|ψ� ≡ �φ| (A|ψ�) = �φ|A|ψ� . (2.14)

The correspondence �φ| → �φ�| ≡ �φ|A is linear:

(a1�φ1|+ a2�φ2|)A = a1�φ1|A+ a2�φ2|A . (2.15)

2.3.3 Examples.

• We have seen that in the case of a finite dimensional Hilbert space, linear operators
can be represented by standard matrices. The action of an operator on a vector
is then represented by the standard left multiplication of the corresponding matrix
on the vector coordinates A|v� →

�
i
aj

i
ci. The action on the bras defined above

corresponds to right matrix multiplication: �v|A →
�

j
c̄ja

j

i
.
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2.4 Hermitian and self-Adjoint operators.

Let us consider an operator A defined in a subvector space W ⊆ V (of course we might
have W = V ). If for any pair of vectors |v1�, |v2� ∈ W we have that �Av1|v2� = �v1|Av2�
then A is a Hermitian operator.

By using the previous paragraph A defines also a linear operator on the bras. Now, by
using the bra/ket relation, we can define a new operator A† on the kets (A† is called the
adjoint of A): ∀ |ψ� ∈ V we define A†|ψ� as the ket corresponding6 to the linear functional
�ψ|A acting onW . Even if this definition might seem abstract we will see that it is just the
generalization of the standard Hermitian conjugation for (possibly infinite dimensional)
Hilbert spaces. Let me summarize the main properties of the Adjoint operation:

(A+B)† = A† +B† , (2.16)

∀a ∈ C ⇒ (aA)† = āA† , (2.17)

(AB)† = B†A† . (2.18)

The first two properties follow from the linearity of A and B on the bra and from the
antilinearity of the bra/ket relation. Eq. (2.18)

An operator is Hermitian if A† = A.

Subtlety: notice that in this definition I have been vague on the domain of definition of A and A†.

In the case of infinite dimensional spaces the domains of the two operators might be different, even if the

A† and A are equal on the common part of the two domains. A self-adjoint operator is an Hermitian

operator for which the domains of A and A† are also equal. Except for the example below, we will use

the words “Hermitean” and “self-adjoint” as equivalent and asssume that there are no subtelties with

the definition of the domain of the operators.

2.4.1 Examples and exercises.

• Consider a finite dimensional Hilbert space V . We know that is isomorphic to C
n

and that each linear operator A in V is mapped in a matrix aj
i
in C

n. Then
Hermitian operators just correspond to Hermitian matrices. Moreover there are
no subtleties with the definitions of the domains (as they always coincide with the
whole vector space); then the operators corresponding to Hermitian matrices are
also self-adjoint.

6There is a subtlety: there might be no corresponding ket; in this case we just eliminate |ψ� from the
domain of A†.
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• In the case of infinite dimensional vector spaces, one has to pay some attention to the domain
where the linear operator are defined. For instance, consider the space V of smooth functions
(ψ(x)) in R which are square integrable and the operator position (x): it is not guaranteed that
xψ(x) is an element of V and so x is not defined over the whole V . Example: ψ(x) = A x

1+x2 .

• A Hermitian, but not self-adjoint operator. Consider the wavefunctions you have seen in the
problem of the infinite potential well

|n� ≡ sin
�nπx

L

�
, with x ∈ [0, L] .

Consider the vector space W generated by any finite linear combination of these functions with the
standard scalar product

� L
0 ḡ(x) f(x) dx. Then the operator P = −i d

dx is Hermitian, but cannot
be extended to be a self-adjoint operator.

Exercise

• Prove that �φ|A†|ψ� = �ψ|A|φ� (of course suppose that |φ� belongs to the domains
of A and |ψ� to the domain of A†).

3 Eigenvalues and Eigenvectors.

3.1 Definition.

Let complex V be a vector space. Consider a linear operator A from V to itself A : V → V .
A vector |v� ∈ V that satisfy

A|v� = λ|v�, (3.1)

for some complex number λ is called eigenvector and λ is called eigenvalue7. Of course,
since A is linear, one can rescale |v� by an arbitrary number (as in |v�� = c|v�) and build a
new eigenvector (|v��) with the same eigenvalue. It is also possible that a vector |w�, that
is linearly independent from |v�, is an eigenvector with the same eigenvalue (that is we
might have A|w� = λ|w�). It is straightforward to prove that the set of all eigenvectors
with the same eigenvalue form a vector space (called eigenspace) that is a subspace of V .

[Revision from MT2/MT3]. If V is a finite dimensional vector space, we have a
clear algorithm to find the eigenvalues and the eigenvectors.

• Any finite dimensional vector space V is isomorphic to C
n and any linear operator

from V to itself can be represented as a matrix aj
i
acting on C

n.

• The eigenvalues are the solutions of the following equation: det
�
aj

i
− λδj

i

�
= 0

(this is a polynomial equation whose degree is equal to the dimension of the vector
space).

7The trivial solution |v� = 0 is neglected and does not count as an eigenvector.
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• For each eigenvalue we can find the corresponding eigenvector by solving the follow-
ing set of n linear equations

n�

i=1

aj
i
ci − λcj = 0 , j = 1, 2, . . . , n . (3.2)

Notice that eigenvectors with different eigenvalues form a set of linearly independent
vectors.

3.1.1 Examples and exercises.

Exercise. Consider the following matrices as operators form C
2 to itself

M =

�
1 −i
0 1

�
, σ1 =

�
0 1
1 0

�
, σ2 =

�
0 −i
i 0

�
, σ3 =

�
1 0
0 −1

�
. (3.3)

Find all possible eigenvectors and the corresponding eigenvalues for M and the σi’s.

3.2 Eigenvectors of self-adjoint operators.

Let us start from the case of finite dimensional vector spaces that you studied in MT2/MT3.
In this case, self-adjoint operators can be represented simply as Hermitian matrices. We
have the following theorem.

[T1] The eigenvectors of an Hermitian matrix A form a complete basis for Cn

and the corresponding eigenvalues are always real.

(Sketch of a) Proof: the eigenvalue equation is a polynomial equation (of degree n) then
it has at least one complex root (the “Fundamental theorem of algebra”). This means
that there is at least one eigenvector |v1�. Since A is Hermitian, then A maps the space
orthogonal to |v1� (V ⊥

1 ) into itself: if (|v1�, |w�) = 0 then (|v1�, A|w�) = (A|v1�, |w�) =
λ1(|v1�, |w�) = 0. Then A restricted to V ⊥

1 is just a (n − 1) × (n − 1) matrix and
we can repeat the same steps recursively to find n eigenvalues and eigenvectors. Since
the eigenvectors are linearly independent, they form a basis. Notice that the basis just
constructed is an orthogonal basis. Of course we are free to rescale the eigenvectors as we
want and (3.1) is always satisfied, thus we can make the eigenvector basis orthonormal.
So by using an exercise given in week 2, we can state the completeness of the eigenvectors
|vi� of a Hermitian matrix in the following way:

�

i

|vi��vi| = 1 , (3.4)
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Finally notice that the eigenvalues of A are real

λ1||v1||
2 = �v1, |Av1� = �Av1|, v1� = λ̄1||v1||

2 . (3.5)

Now the question is what happens if we deal with self-adjoint operators defined on
an infinite dimensional Hilbert space. As you can see from the example below this nice
theorem cannot hold exactly in the same form. We can consider a weaker version of (3.1):
look for a bra �vλ| such that

�vλ|A|w� = λ�vλ|w� , (3.6)

for all |w� in the domain of A (λ is real, as in (3.5)). As we have seen in the example
2.2.1 on the Dirac’s delta not all bras satisfying (3.6) do have a corresponding ket. Thus
for a self-adjoint operator we have two cases:

• the possible eigenvalues satisfying (3.1) form a discrete set;

• the “eigenvalues” satisfying (3.6), but not (3.1), form a a continuous set.

It turns out that, even if the bras with continuous eigenvalues do not have corresponding
ket, their integral over a finite region of values of λ does. In particular if c(λ) is a
smooth function that is non-zero only in a finite region of the possible λ’s, then the linear
functional

�
dλc(λ)�vλ| has a corresponding vector that we will indicate with

�
dλc(λ)|vλ�.

With an abuse of notation, physicists commonly use also the symbol |vλ�, even if there
is no |vλ� corresponding to the bra in (3.6)! The idea is that this object yields standard
vectors when integrated.

At this point we can state the infinite dimensional analogue of the theorem [T1]. Con-
sider a self-adjoint operator: the eigenvectors |vi� corresponding to discrete eigenvalues
together with those related to continues eigenvalues (|vλ�) form a complete set

�

i

|vi��vi|+

�
dλ|vλ��vλ| = 1 . (3.7)

The orthonormality condition reads as follow

�vi|vj� = δij , �vλ1 |vλ2� = δ(λ1 − λ2) . (3.8)

3.2.1 Examples and exercises.

• Consider the momentum operator in quantum mechanics −i� d

dx
that act on differ-

entiable, square integrable (wave)functions. There is no solution to the eigenvector
equation

−i�dψ(x)
dx

= λψ(x) . (3.9)

It is clear that the only possibility is to choose ψ(x) = e
iλx

� , but this function is not
square integrable regardless whether λ is real or imaginary.
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4 The postulates of quantum mechanics

1 At a fixed time t0, the state of a physical system is defined by a vector |ψ� in a
Hilbert space H.

2 Every physical (measurable) quantity A is described by a self-adjoint operator A
(also called “observable”).

3 The result of a measurement of the physical quantity A is always one the eigenvalues
of the corresponding operator A.

4 The probability of finding the eigenvalue a in a measurement is ||Pa|ψ�||2, where |ψ�
has unit norm and Pa is the projector on the space of eigenvectors of eigenvalue a.

5 After a measurement of A yielding the value a (an eigenvalue of A), then the state
of the system change from |ψ� to Pa|ψ�/||Pa|ψ�||.

6 The time evolution of the system is described

H|ψ(t)� = i� d

dt
|ψ(t)� , (4.1)

where H is the observable associated to the energy of the system (Hamiltonian).

4.0.2 Examples and exercises.

Consider the operator defined on C
3 and the ket |φ�:

A =




0 2 0
2 0 0
0 0 2



 , |φ� =
1
√
2




i
0
1



 . (4.2)

The operator A has the following three eigenvectors:

|ψ1� =
1
√
2




1
1
0



 , |ψ2� =
1
√
2




1
−1
0



 , |ψ3� =




0
0
1



 . (4.3)

with eigenvalues 2, −2 and 2 respectively. Thus the projectors on the two eigenspaces are

P(2) = |ψ2��ψ2|+ |ψ3��ψ3| , P(−2) = |ψ1��ψ1| . (4.4)

If the state of our physical system is described by |φ�, then I can compute the probabilities
of measuring ±2 by decomposing |φ� on the basis (4.3)

|φ� = P(2)|φ�+ P(−2)|φ� =
3�

i=1

�ψi|φ�|ψi� . (4.5)
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The probability of finding −2 is ||P(−2)|φ�||2 = 1/4, while that for 2 is ||P(2)|φ�||2 = 3/4.
Exercise. Consider the Hilbert space C2 and the observable σ1 in (3.3). If a quantum

mechanical system is described by the state

|ψ� =

�
1
2

�
, (4.6)

• What is the probability, in a physical measure, of finding as a result the first and
the second eigenvalue?

• If the result of this measure is the positive eigenvalues, what are the possible re-
sults in a subsequent measure of the observable sin θσ2 + cos θσ3? What are the
probabilities of finding each result?

5 Some simple quantum mechanical system.

We will focus on some simple quantum mechanical systems that have a time independent
Hamiltonian. In this case it is simple to describe in general how a vector |ψ(t0)�, repre-
senting the system at the time t0, evolves with time. If Ĥ is time independent, one can
check that the following state

|ψ(t)� = e−
iĤ

� (t−t0)|ψ(t0)� ≡
∞�

n=0

1

n!

�
−iĤ

� (t− t0)

�n

|ψ(t0)� (5.1)

solves the time evolution equation of the postulate 6. In order to compute explicitly |ψ(t)�
it is clearly convenient to decompose |ψ(t0)� along the complete basis of the Hamiltonian
eigenvector. So one of the tools we need is the set of the solutions of the “time indepen-
dent Schroedinger equation” Ĥ|ψE� = E|ψE�. Often this problem can be simplified by
exploiting the following observation.

Two observables Â and B̂ that commute ([Â, B̂] = 0) have a common set eigenspaces.
This means that we can find projectors P(a,b) that project at the same time on the subspace
of eigenvalue a for the first operator Â and the the subspace of eigenvalue b for the second
operator B̂. You can convince yourself that this is reasonable, by looking at the simple
case of finite dimensional Hilbert spaces: in this case if two Hermitian matrices commute,
they have a common set of eigenvectors. Sketch of a proof: Suppose that the |va� is the
only eigenvector of eigenvalue a of the Hermitian matrix A. If [A,B] = 0, it is easy to see
that also B|va� is an eigenvector of A with eigenvalue a: A(B|va�) = BA|va� = a(B|va�).
This means that B|va� must be proportional to |va�, in formulae: B|va� = b|va�, which
implies that |va� is also an eigenvector of B.


