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CAPACITANCE

Definition of capacitance

Recall:  For a point charge or a charged sphere
r4

Q
V

oπε
=

In general,  POTENTIAL  ∝  CHARGE for any size or shape of
conductor.

Definition:  The constant of proportionality between V and Q is
called CAPACITANCE, C:

V
Q

C     =

Units of capacitance: 1CV
Volts

Coulombs
C −≡≡               

Definition: 1  Farad  (F)   ≡  1 CV-1

Capacitance is a measure of the ability of a conductor or a system of
conductors to store charge (and hence to store energy).

Recall:  For a charged conductor QV
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Alternative units for εo:
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          o ≡≡ε

⇒ εo  ≡  Fm-1 These are the units in which εo  is usually quoted.

Relationship between
capacitance and energy
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Procedure for finding capacitance

1. Imagine a charge Q on the conductor (if it’s a single conductor) or
charges of ±Q (for a pair of conductors)

2. Find E  (e.g., use Gauss’s Law)

3. Find the potential (difference) using ∫ ⋅=∆
b

a
dV LE      

(never mind the sign).

4. Put C = Q/V    [Q always cancels out]

Note:

1. C depends only on the geometry - the size and shape of the
 conductors and the distance between them.

2. C is independent of Q   [because V  ∝  Q]

Examples:

1. Capacitance of an isolated sphere
2. Parallel plate capacitor
3. Capacitance of two concentric spheres
4. Capacitance per unit length of a co-axial cable

See lecture notes
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Capacitor  An electrical component designed
to have a particular value of C.

Capacitors in parallel  

∆V is the same for both:  ∆V1  =  ∆V1  =  ∆Vtot

Qtot  =  Q1  +  Q2 ∆Vtot  =  ∆V

Therefore
V
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Q
C tot ∆

+
∆

= 21           ⇒  C C Ctot      = +1 2

Capacitors in series

In this case Q is the same for both and ∆V  is different.
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Dielectrics and polarisation

Until now, we have assumed that the space between charges,
conductors, etc. is empty (a vacuum).  What if it’s filled with some
insulating material?

Recall: A DIELECTRIC (insulator) is electrically neutral.

But it contains many +ve and -ve charges in its atoms or molecules.
Because it’s an insulator, the charges can’t move around.

BUT:  some molecules have a natural DIPOLE MOMENT

⇒ when placed in an external
electric field oE , the dipoles
tend to align with it.

Even if no INTRINSIC dipoles exist, they
can be INDUCED by an applied field

oE , producing the same effect.

Consider a parallel plate capacitor, with positive and negative charges
on the plates.  This creates an electric field oE  between the plates.

If there is a dielectric between the plates, then due to dipole alignment,
or (POLARISATION) the distributions of +ve and -ve charge do not
overlap exactly:

Excess +ve charge  on the right.

Excess -ve charge  on the left.

The induced (POLARISED) field, iE ,
tends to OPPOSE oE .

The resultant field is LESS than
the applied field:

Etot  =  Eo  - Ei
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Dielectric constant

Etot  =  Eo  - Ei Let    otot E
K
1

E = (K ≥  1)

K (sometimes written as the greek letter κ  -  kappa) is the DIELECTRIC
CONSTANT or RELATIVE PERMITTIVITY of the material.

Let σo = charge density on capacitor plates: Eo  =   σo/εo

Let σi = induced charge density on surfaces of dielectric: Ei  =   σi/εo

Therefore  [ ]   
K
11EEEE oototooioi 



 −ε=−ε=ε=σ    

So the induced surface charge density is  



 −σ=σ

K
1

1oi

The effect of dielectric constant on capacitance

Consider the case of a parallel plate capacitor.

No dielectric:
d
A

dE
Q

V
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C o
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∆

=       

With dielectric: 
d
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KQ
dE

Q
V
Q
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ε===
∆

=         

Capacitance with dielectric = K( Capacitance without dielectric)

So, capacitance (i.e., the ability to store charge and hence energy) is 
increased by the use of a dielectric.
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Typical values of dielectic constant K

Air  1.00059   (not much different from a vacuum)
Polythene 2.3
Glass 5 - 10
Germanium 16
Water 80
A perfect conductor ?

Gauss's Law in dielectrics

Just replace εo with Kεo :
o

enclosed

K
Q

d
ε

=⋅=Φ ∫   AE  

Dielectric breakdown

If E > some limit, the BREAKDOWN FIELD STRENGTH of the material,
then the bonds between the electrons and the atoms are broken and the
material becomes a CONDUCTOR ( →  short circuit in a cable or
capacitor).
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Capacitance per unit length of a pair of
co-axial cylinders (e.g., a co-axial cable)

Step 1: Let charge per unit length be + λ on inner conductor
 - λ on outer conductor

Step 2: Find E :

Field pattern: Field lines go from +ve charges on inner 
conductor to  -ve charges on outer conductor

E = 0 for r < a and r > b  (A Gaussian cylinder encloses 
no charge)

Apply Gauss’s Law → E
ro

  = λ
πε2

(similar to a previous example)

Step 3: Find ∆V: ∫ ⋅=∆ LE  dV

Path: Integrate along a field line  →  r    L dd =

and  Ld  is parallel to E  so LE d⋅  = Edr
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We take ∆V to be positive when finding capacitance.

Step 4: Put C  =  Q/V  →  






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a
b
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2
C o     (Capacitance/unit length)

dL
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