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ELECTRIC ENERGY AND ELECTRIC POTENTIAL
(Young & Freedman  Chap. 23)

(Ohanian Chaps. 25, 26)

Review of Force, Work, and Potential Energy
The electric field exerts a force on a charged object.  If the charge moves,
WORK is done

Recall:    Work done  =  Potential energy gained  =  (Force)(Distance)

Example:

Mass m lifted through height h against gravity

Required force mg    
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where  ME  = Mass of the Earth RE  = Radius of the Earth

Work done = PE gained = (Force)(Distance)

W  = ∆U  = mgh

W  = Area under Force-Distance graph
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Electric potential energy
Let a charge Q be moved through a displacement

L∆  AGAINST an electric field E .

Work done = PE gained = (Force)(Distance)
W  = ∆U  = (QE)∆L

What if the displacement is not exactly against E ?

Let L∆  be the sum of

x∆ along E  and
y∆  perpendicular to E .

For y∆ : no force as E  has no component along this direction.

For x∆ : E  and ∆x are antiparallel ⇒ ∆U  =  QE∆x  =  QE(∆Lcosθ)

Now LE ∆⋅   =  -E∆Lcosθ  (negative sign as E  and L∆  are anti-parallel)

So ∆U  =  - Q LE ∆⋅

i.e., The change in electric potential energy is equal to minus the
charge multiplied by the dot product of the electric field and the
displacement vectors

Let’s consider why the sign of ∆U has to be negative:

If Q moves against E If Q moves with E

We must do work to push it The field pulls it along
⇒ It gains PE     ⇒ It loses PE
⇒ ∆U is positive ⇒ ∆U is negative

LE ∆⋅  is positive if E  and L∆  are parallel
negative if E  and L∆  are anti-parallel

So: ∆U  =  - Q LE ∆⋅ , as derived above
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More general case:

So far we have considered a displacement in a straight line in a uniform
electric field.  What if the field is non uniform and the path of the charge
is arbitrary?

Let Q move from a to b along an Let Ua  =  PE at a
arbitrary path in a non-uniform Ub  =  PE at b
electric field E (x,y,z)

Let the path be broken into
many small displacements

Ld (two typical ones shown here)

For any one element, we have
dU  =  - Q LE d⋅

To find the change in potential energy,
∆U, for the whole path, we must add up
all of the contributions from each Ld  by INTEGRATING this expression
over the whole of the path:

∫ ⋅−=−=∆
b

a
ab dQ  U   UU LE       

Electric potential and potential difference
Definition:  The ELECTRIC POTENTIAL, V, at a point in space is the
potential energy which a unit positive charge would have at that point

i.e., Potential = Potential energy per unit charge
Q
U

V =

Potential energy is a relative quantity.  It is more sensible to work in terms
of POTENTIAL DIFFERENCE:

a

b
dL

dL

E
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Definition:  The ELECTRIC POTENTIAL DIFFERENCE, ∆V, between two
points a and b is equal to the work done in moving a unit positive charge
from a to b.

From the expression derived above for the electric energy difference, ∆U,
we have

∫ ⋅=−=∆
b

a
ab d-VVV LE              

This very important expression relates the electric field vector to the electric
potential, a scalar quantity related to energy.  The potential difference
between two points is the line integral of the electric field along any path
between the points.

The work done in moving a charge Q through a potential difference ∆V is

W  =  Q∆V

Note:

1. V can be defined to be zero at any point we choose.   As there
are no restrictions, we usually pick a position to make calculations

 simplest (e.g., at V = 0 at infinity or at the surface of a conductor)

2. Units of V: ∫ ⋅=∆
b

a

d-V LE      

 ⇒ Potential  ≡ (Electric field)(Distance)    ≡ cetanDis
eargCh

Force









Ao the units are N C-1 m

In the SI system: 1 Volt  (V) = 1 N C-1 m

i.e., if a force of 1 N moves a charge of 1 C through 1 m, then the
 potential difference between the two points is 1 V.



EMF  2005                   Handout 4: Electric Energy and Electric Potential 5

Electric Field ≡ 
Metres
Volts

cetanDis
Potential ≡

Therefore, Electric field can be expressed in units of  V m-1.
 In fact, these are the units in which the electric field is usually

 quoted.

3. The ELECTRON VOLT (eV) as a unit of energy or work

If a charge of e moves through a potential difference of 1 V, then
 the work done is:

W  =  Q(∆V)  =  (e)(1)  =  1.602 x 10-19  Joules  =  1 eV

How to find V
Method 1:  Integrate the electric field

1. If E  is not given, then find it (e.g., use Gauss’s Law).

2. Choose the location of V = 0, if it is not given
e.g.: V = 0 at infinity

V = 0 at the surface of a conductor

3. Work out ∆V using  ∫ ⋅=∆
b

a

d-V LE    

Forget about the sign:  just work out the magnitude: ∫ ⋅=∆
b

a

dV LE    

 
Choose a suitable path to make the line integral easy:

i.e., make E  and Ld
parallel or antiparallel
or perpendicular

dL

E E
E

dL
dL
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4. Now use common sense to determine whether ∆V is positive or
 negative:

If you would need to PUSH
positive charge AGAINST
the field to go from a to b

Analogy: Pushing a ball up a hill

If the electric field would
PULL positive charge
along from a to b

Analogy: A ball rolling down a hill

Examples of finding the electric potential by
integrating the electric field

1. Potential due to a point charge
2. Potential due to an infinite sheet of charge
3. Potential due to a sphere of uniform charge density

See lecture notes

a

b

a

b

Vb  > Va

Va  > Vb
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The electric field is conservative
Definition: A field is conservative if the work done in moving between any
two points is independent of the path taken.

E  is conservative because ∆V is independent of the path.

Proof:  Consider the field due to a point charge Q.  If we can prove it for
this we can argue from the principle of superposition that it must be true for
any charge distribution (i.e., any electric field distribution).

Let P1 and P2 be two arbitrary paths
between a and b.

Divide each path into many RADIAL
and CIRCULAR ARC sections.

For the radial sections:
∆V = Edr as LE d⋅  = Edr (parallel)

For the circular arc sections: 
∆V = 0  as LE d⋅  = 0 (perpendicular)

Every dr for path A has an exactly
corresponding dr for path B, and total
change in radius is exactly the same for the two paths

i.e.:

P2 PATHP1 PATH

LE         LE  











⋅=












⋅ ∫∫

b

a

b

a

dd ⇒  E  is conservative

Another way of putting it: 0dd
a

b

b

a

     LE    LE  =⋅+⋅ ∫∫ ⇒     0d     LE  =⋅∫
The line integral of the electric field around a closed path is zero.

a

b

E

P1

P2
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The electric field is zero inside a closed empty
cavity inside a conductor
Proof: We will assume that E  ≠ 0 in the cavity and so deduce a result
which we know is incorrect.  This will imply that our original assumption
must be wrong, so that E  = 0.

So, assume E   ≠ 0 in the cavity.

E  = 0 in the conductor (proved before)

There are no charges in the cavity, so the field
lines in the cavity must terminate on charges
on the inner surface

Consider a closed loop as shown by
the dotted line:

E  = 0 in the conductor E   ≠  0 in the cavity

Therefore   0d     LE  ≠⋅∫   for the closed loop

⇒ violation of the conservative nature of E , which we know to be
 impossible.

Therefore we must conclude that E   =  0  inside the cavity.

This is the principle of the  FARADAY CAGE:

Anything or anyone
inside is completely
isolated from electric
field disturbances
outside the metal
enclosure.

Metal enclosure

E

Conductor



EMF  2005                   Handout 4: Electric Energy and Electric Potential 9

How to find V
Method 2:  Use the principle of superposition

This method can be used to find the potential at a point in spacesome
given distribution of charge.  We assume that V = 0 at infinite distance.

1. Break the charge distribution into many small elements, dQ.
2. Regard each dQ as a point charge
3. Use the equation for the potential due to a point charge to write down

the contribution of dQ to the potential at P:

r4
dQ

dV
oπε

=    

4. Apply the principle of superposition: the total potential is the sum of all
the contributions from all the dQ elements:

∫ πε
=

ndisributioeargCh
or4

dQ
V

  

    

Example:  finding the electric potential using the
principle of superposition

1. Potential on the axis of a line of charge

See lecture notes
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The electric field is the gradient of the electric
potential

Recall:  In general, a vector field can be expressed as the gradient of a
scalar field:

If Hx,y,z) is a scalar field, then

Hk̂
z

ĵ
y

ˆ
x

k̂
z
Hˆ

y
Hˆ

x
H

H )H(Grad 







∂
∂+

∂
∂+

∂
∂=

∂
∂+

∂
∂+

∂
∂=∇=              i             j      i       

Now, dV  = - LE d⋅ ⇒⇒
L

    E
d
dV−=

If we know V(x,y,z) we can find E (x,y,z) by taking partial derivatives.

 
x
V

 Ex ∂
∂−=   

y
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 Ey ∂
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z
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∂
∂+

∂
∂−=                       E

Examples: finding the electric field when given
V(x,y,z)

See lecture notes
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Electric energy of a system of point charges   

Note: The treatments of this topic in Y&F and Ohanian are a bit different.
The following is based on Ohanian's approach.

The total energy, Utot,  of a system of charges is equal to the total amount
of work, Wtot, that must be done to assemble it.

Recall:  The work done in moving a charge Q through a potential difference
V is

W  =  Q∆V.

Consider a system of three charges,
Q1, Q2 and Q3, which are brought
together from r = ∞  where we let V = 0.

Assume that we assemble them in the order 1-2-3

Work done to bring in Q1  = W1  = 0  (there is no opposing field)
Work done to bring in Q2 = W2 = Q2V21

Work done to bring in Q3 = W3 = Q3V31   +  Q3V32

where V21  = potential at position 2 due to due to Q1 being nearby.
V31  = potential at position 3 due to due to Q1 being nearby.
etc.

So, Wtot  =   Utot  =  Q2V21  +   Q3V31   +  Q3V32

Now, imagine that we brought them together in the reverse order, 3-2-1:

Wtot  =   Utot  = 0 + Q2V23  +   (Q1V12   +  Q1V13)

If we add these two equations for Wtot, we get:

2Wtot  =   2Utot  = Q1(V12   +  V13) + Q2(V21   +  V23) +  Q3(V31   +  V32)

No work
needed to
bring in Q3

Q2: we do work
against the
repulsion of Q3

Q1: we do work
against the
repulsion of Q3 and
Q2

Q1

Q3

Q2
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Now V12 + V13 = V1 = Total potential at Q1 due to Q2 and Q3 combined
V21 +  V23  = V2 = Total potential at Q2 due to Q1 and Q3 combined
V31 +  V32  = V3 = Total potential at Q3 due to Q1 and Q2 combined

⇒ 2Wtot  =   2Utot  = Q1V1  +  Q2V2  +  Q3V3

This treatment can easily be extended to an arbitrary number of charges:

For n charges, ∑=
n

1

iitot VQ
2
1

U     

where Vi  =  potential at the position of Qi due to all the other charges.

Electric energy of a charged conductor
Recall:  All of the excess charge is on the surface

Since it is a conductor, the surface is an
equipotential  ⇒  V is the same everywhere

Energy of dQ  is  dU  =  ½(dQ)V

⇒ QV
2
1

dQV
2
1

VdQ
2
1

Utot             === ∫∫
For a system of n conductors, ∑=

n

1

iitot VQ
2
1

U     

(just as for a system of n point charges)

Examples: finding the electric energy of a system
1. Electric energy of a conducting sphere
2. Electric energy of a parallel plate capacitor
3. Electric energy of a uniformly charged sphere

See lecture notes

Energy of a system
of point charges

Conductor:
total charge = Q

Small patch,
charge = dQ
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Energy density of the electric field

Recall: For a parallel plate capacitor, the total stored energy is

A
dQ

2
1

U
o

2

tot εε
    =

We can rewrite this as )Ad(
A

Q
2
1

U
2

o
otot 








=

εε
εε    

⇒⇒  2
otot E

2
1

U εε     = (volume of space between the plates)

where E is the (uniform) electric field between the plates.  Here we regard
the stored energy as residing in the space between the plates.

Energy density (energy per unit volume): 2
oE2

1
u εε    =

(the energy density has units of J m-3 in the SI system).

It can be shown that this result holds generally, for ANY electric field

The ENERGY DENSITY OF THE ELECTRIC FIELD is    2
oE

2
1

u εε     =


