EMF 2005 Handout 1: Review of Vector Algebra

REVIEW OF VECTOR ALGEBRA
(Young & Freedman Chapter 1)

Scalars and vectors

SCALAR: Magnitude only
Examples: Mass, time, temperature, voltage, electric charge

VECTOR: Magnitude and Direction
Examples: Displacement, force, velocity, elecitric field,
magnetic field

Vector notation

It is vital to distinguish vectors from scalars. Various conventions are used
to denote vectors:

Boldface letters: e.g., A

Bars, arrows or squiggles: A X A ;\
R —

Young & Freedman uses boldface with and arrow: A

Ohanian uses just boldface letters : A

| will use A (with the letter in boldface in printed notes)

®  For the magnitude of a vector (which is a scalar), | will use the letter in
plain typeface and without the bar:

e.g.. Magnitude of A is A
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Sometimes | will use the convention of putting the letter between vertical

bars: e.g.: Magnitude of A is |A|

For unit vectors (of magnitude equal to one) | will use lower case letters
with a "hat" on top:

VAN
e.g.. a

Recommendation: You should use the same conventions - this is not
obligatory - if you prefer you may adopt one of the other conventions as
long as you use it correctly and consistently.

Assuming that you follow this recommendation, then

Don't forget: if it is a vector, put a bar on it.
If it is a unit vector, put a ""hat" on it.

Simple example of a vector: displacement vector
in the X-Y plane

Vectors are drawn as arrowed lines with the arrow giving
the direction and the length representing the magnitude

Y
Magnitude of D = length D

Direction of D is specified by
the angle 6
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Vector equality

Two vectors are equal if and only if they are equal in magnitude and
direction

e.g., vectors D and D1 in the diagram above are equal even though they
are not coincident in space.

Vector addition

If we add two vectors we get another vector.

Toadd A and B

Put the beginning of one on the end of the
other

The vector C is formed by joining the beginning
and end of the combination is the sum

C=A+B

C is also called the RESULTANT of A and B

The PARALLELOGRAM LAW is another way of adding A and B

1. Letthe start of A coincide with the start of B A

2. Draw a parallelogram with A and B as sides A 4

3. The resultant, C is the diagonal containing
the starts of A and B

—_—

B
Note: Clearly, A+B = B+A (vector addition is COMMUTATIVE)

(A+B)+D =A+(B+D) (vector addition is ASSOCIATIVE)
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Vector multiplication by a real number

x A has A

Magnitude =  xA (i.e., x times the magnitude of A) -
B 2A

Direction = the same as that of A if x is positive Z

=  opposite to that of A if x is negative  -0.5A

Components of a vector along
the coordinate axes

We will consider the 3-dimensional case using as an example the position
vector with respect to the origin. The result applies to ANY sort of vector.

Let point P have coordinates Nz
Ay, Ay, A, in 3-dimensional space Ay

Let A be the displacement vector ~
of point P from the origin.

We describe A in terms of three
ORTHOGONAL UNIT VECTORS
along the three axes:

>
>0
A4

X
I has magnitude 1 and points along +X

j has magnitude 1 and points along +Y k
k has magnitude 1 and points along +Z

Clearly A=A i+ A,j+Ak
X

VANEVAN
Note: alternative notion used in some books: i, j, k = x, vy,

A, A,, A, are called the COMPONENTS of the vector A
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Two-dimensional example:

Y A, = Acos(6y)

A, = Asin(6,) = Acos(6,)
AY

By PYTHAGORAS'S THEOREM

2> |

A= A2 + A2

0
Y% \ex X
i.e., the magnitude of a vector is equal to
Ax the square root of the sum of the
squares of its components

In the 3-dimensional case: A, = Acos(6y)
A, = Acos(6,)
A, = Acos(6,)

A= A2 + A2+ A2

Addition of vectors in terms of their components

Let A=A,i+A,j+AKk B=B,i + B,j + Bk
Then, because vector addition is commutative, we have

A+B=(A, +B,)i + (A, +B,)j + (A, +B,)k

i.e., we simply add the components separately.
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The dot product (scalar product)

Definition: A-B = ABcos8o

Bcoso A

i.e. A-B=(Magnitude of A)(Magnitude of projection of B onto A)
Things to note about the dot product:

1.  A-B isaSCALAR

A-B=B- A

2. (Commutative)

(Distributive )

Projection of B+C onto A
= sum of projections of B and C .

4. If Aand B are perpendicular A-B = 0 as cos(90°) =0

>|

5. If A and B are parallel A AB as cos(0°) = 1

W

6. If Aand B are anti-parallel A-B =-AB as cos(180°) = -1

m%
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7. a-a=1

A A n

8. i-i = jj=kk=1 astheyare parallel

A>

A A

i-j =ik =jk=0 astheyare orthogonal

—

9.  The dot product of two vectors is the sum of the products of
their components:

>
@

= (A i + A,j + Ak)-(B,i + B,j +B,k)=AB, +AB, +A,B,
Exercise: Prove this using 3, 7 and 8.

10. The component of vector A along one of the coordinate axes is
the dot product of the relevant unit vector with A , e.g.

A =i (Ad+Aj+AK=AIiI+Aji-] +Aik = A,

The Cross Product

AxB =C N
Magnitude of C: C = ABsin6
_ C
Directionof C: C is perpendicular to the /]\
plane formed by A and B >Y
Direction is given by the X
Right Hand Rule: A 0 B

Step 1: Imagine your right hand pointi_ng algng A
Step 2: Curl the fingers around from A to B B
Step 3: The thumb then points in the direction of C

=C (direction = +2)
=-C (direction = -2)

As drawn above, A
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Things to note about the cross product:
1.  AxB isaVECTOR
2. If A and B are perpendicular ‘Kxﬁ‘ = AB

as sin(90°) = 1

B
—>A
B B L A
3. If A and B are parallel or antiparallel ‘Ax B‘= 0 3
B

A
as sin(0°) =sin(180°) = 0 %>
B

4.  The cross product is not commutative:
x B is out of the page

x A is into the page

xB = — (BxA)

> W B

5. For the orthogonal unit vectors: AN

>

A

-k
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6. The cross product is not associative: A x (BxC) = (A x B) x C)

7. Butitis distributive: Ax(B+C)= (AxB)+ (AxC)

\%
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Scalar and vector fields

The value of a scalar or vector quantity often varies with position in space.
A function which describes this variation is said to be the FIELD of the
quantity.

Scalar field:

A scalar function S(x,y,z) gives the value of S at every point in space.
Examples: S = Height above sea level (geographical contour map)

S = Atmospheric pressure (isobars on a weather map)

Vector field:

A vector function F(x,y,z) gives the magnitude and direction of F at every
point in space.

Examples:

1. Wind velocity — indicated by arrows on a weather map

2. The gravitational field of the Earth, g :

GM
Magnitude: g = 2E
Re
where Mg = mass of the Earth;

Re = Radius of the Earth

Direction: Towards the centre of the Earth

3.  The Electric Field, E
4.  The Magnetic Field, B
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Gradient of a scalar field

Example: H = Height above sea level

Contours lines of constant height

lines of constant potential energy

Two-dimensional  Height
example: Y

Distance L

The arrows show the gradient (slope) of the hill, S, at various points. S is
a vector: B
S =dH/dL

The gradient has: Magnitude (steepness)
and Direction (the direction in which a ball would
roll if released at that point)

This is just one example of a general principle:

The gradient of a scalar field is a vector field

If Hx,y,z) is a ANY scalar field, then

= oH: oJdH: JH. J : J = Jd ¢
Grad(H) =VH = —i —j+ —k = |—i ~ i “kH
rad(A) 8x|+8yl+8z {axl +8yl+az}

Grad(H) is also denoted VH (pronounced “del”). V operates on a scalar
field to produce a vector field.

Example: The Electric field, E, is the gradient of the Electric Potential, V.



