ELECTRIC AND MAGNETIC FIELDS

ANSWERS TO ASSIGNMENT 3

dA

E

 $d\overline{A}$

Q1: $E = 100 \text{ N C}^{-1}$ and points downwards. Cylindrical box has radius 3 m.

 $d\overline{\mathbf{A}}$

Ground = a perfect conductor \Rightarrow Electric field is zero inside the ground \Rightarrow Electric field lines terminate at negative charges on the surface of the ground.

(i) Total electric flux through the box :

- For the top side, $\overline{\mathbf{E}}$ is anti-parallel to the normal vector, so
 - $\overline{\mathbf{E}} \cdot \mathbf{d} \overline{\mathbf{A}} = -\mathbf{E} \mathbf{d} \mathbf{A}$

35

The magnitude of the field, E, is also the same everywhere over the top side.

- $\overline{\mathbf{E}}$ is zero over the bottom surface \Rightarrow no contribution to Φ
- $\overline{\mathbf{E}}$ and $d\overline{\mathbf{A}}$ are perpendicular for the sides $\Rightarrow \overline{\mathbf{E}} \cdot d\overline{\mathbf{A}} = 0 \Rightarrow$ no contribution to Φ

Therefore

$$\oint \overline{\mathbf{E}} \cdot d\overline{\mathbf{A}} = \int_{\text{top}} \overline{\mathbf{E}} \cdot d\overline{\mathbf{A}} + \int_{\text{bottom}} \overline{\mathbf{E}} \cdot d\overline{\mathbf{A}} + \int_{\text{sides}} \overline{\mathbf{E}} \cdot d\overline{\mathbf{A}} = \int_{\text{top}} \overline{\mathbf{E}} \cdot d\overline{\mathbf{A}} + 0 + 0$$
So $\Phi = \int_{\text{top}} \overline{\mathbf{E}} \cdot d\overline{\mathbf{A}} = \int_{\text{top}} \text{EdA} = - E \int_{\text{top}} dA = - (E)(\text{Area of top}) = -(100)\pi(3^2) = -2827.43 \text{ N C}^{-1} \text{ m}^2$

The negative sign signifies electric flux going **into** the box.

(ii) The total enclosed charge is $Q_{enc} = \epsilon_0 \Phi = -2.50 \times 10^{-8} \text{ C}$.

This charge is located at the surface of the ground, where the electric field lines terminate.

(iii) Spherical box of same radius:

The enclosed charge is the same as before since the area of ground inside the box is the same. Since Q_{enc} is the same, the total flux, Q_{enc}/ϵ_0 is also the same.

Q2: Long plastic (i.e., insulating) rod. Radius a. Uniform charge density inside.

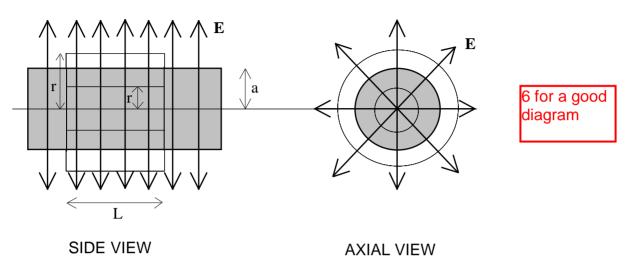
~ 20 for this bit. The answer here is a bit more thourough than is necessary but an understanding of the main steps must be evident.

Deduct 5 marks if the sign is wrong at the end.

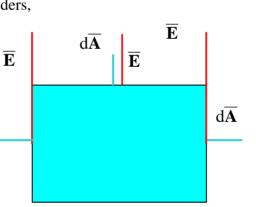
7

30 Charge per unit length = λ .

(a) By symmetry, the field lines will radiate outwards, pointing perpendicular to the axis of the cylinder.



- (**b**) To use Gauss's Law to find E:
- **1.** Diagram with field pattern: as above
- Best Gaussian surface: Choose a cylinder, radius r (two cases: r < a and r > a).
 For either of the two Gaussian cylinders,
 - Flat ends: $\overline{\mathbf{E}}$ and $d\overline{\mathbf{A}}$ are perpendicular $\Rightarrow \overline{\mathbf{E}} \cdot d\overline{\mathbf{A}} = 0$
 - Curved side: $\overline{\mathbf{E}}$ and $d\overline{\mathbf{A}}$ are parallel $d\overline{\mathbf{A}}$



Step-by-step procedure has been taught explicitly so will probably be followed.But as long as the main ideas are clear it's OK

and: because r is the same over the whole of the curved side, so is E.

3. Work out Φ :

$$\Phi = \oint \overline{\mathbf{E}} \cdot d\overline{\mathbf{A}} = \int_{\text{top}} \overline{\mathbf{E}} \cdot d\overline{\mathbf{A}} + \int_{\text{bottom}} \overline{\mathbf{E}} \cdot d\overline{\mathbf{A}} + \int_{\text{side}} \overline{\mathbf{E}} \cdot d\overline{\mathbf{A}} = 0 + 0 + \int_{\text{side}} \overline{\mathbf{E}} \cdot d\overline{\mathbf{A}} = \int_{\text{side}} E dA = E \int_{\text{side}} dA$$

So, $\Phi = (E)(\text{Area of curved surface}) = (2\pi rL)E$

8 for correct Φ and correct derivation 4. Find Q_{enclosed}:

(i) r < a: $Q_{enc} = (Ch arge on length L of rod) x \frac{Volume of Gaussian cylinder}{Volume of Caussian cylinder}$ Volume of rod $\Rightarrow \qquad Q_{enc} = (\lambda L) \frac{\pi r^2 L}{\pi a^2 L} = \frac{r^2}{a^2} \lambda L$

(i) r > a: $Q_{enc} = (Charge on length L of rod) = \lambda L$

5. Equate Φ and Q_{enc}/ϵ_0 to find E:

(i)
$$r < a$$
: $(2\pi rL)E = (r^2/a^2)\lambda L/\epsilon_0 \implies E(r) = \frac{\lambda r}{2\pi a^2 \epsilon_0}$
(ii) $r > a$: $(2\pi rL)E = \lambda L/\epsilon_0 \implies E(r) = \frac{\lambda}{2\pi \epsilon_0 r}$
 $B(r) = \frac{\lambda}{2\pi \epsilon_0 r}$

(c) The flux through a cylinder of radius a/2 is

 $\Phi = \oint E.ds = E \oint ds = (E)(Area of curved surface) = \frac{\lambda(a/3)}{2\pi a^2 \varepsilon_0} 2\pi (a/3)(2)$

So
$$\Phi = \frac{2\lambda}{9\varepsilon_0}$$

⇒r

30 Q3: Given
$$E = \frac{\rho r}{3\epsilon_0}$$
 for $r < R$ $E = \frac{\rho R^3}{3\epsilon_0 r^2}$ for $r > R$
(i) Sketch:
 $\frac{\rho R}{3\epsilon_0} = \frac{E(r)}{E \propto r}$
 $E \propto 1/r^2$
 $E \propto 1/r$

R

3 + 3 for correct Q_{enc} /alues

4

Electric and Magnetic Fields

(ii)
$$r_1 = 10 \text{ mm}, E_1 = 3.77 \text{ x } 10^5 \text{ N C}^{-1}$$
 $r_2 = 40 \text{ mm}, E_2 = 1.88 \text{ x } 10^5 \text{ N C}^{-1}$

If we determine whether the points are inside or outside, we can use the above formulas to find ρ , R and Q.

If both points are inside,
$$\frac{E_1}{E_2} = \frac{r_1}{r_2} \implies \frac{3.77}{1.88} = \frac{10}{40} \implies 2 = 0.25$$
 (NOT TRUE)

If both are outside,

$$\frac{E_1}{E_2} = \frac{r_2^2}{r_1^2} \Rightarrow \frac{3.77}{1.88} = \frac{40^2}{10^2} \Rightarrow 2 = 8 \text{ (NOT TRUE)}$$
Therefore the only possibility is that r_1 is inside and r_2 is outside.
(a) r_1 inside $\Rightarrow \rho(0.010)/(3\epsilon_0) = 3.77 \times 10^5 \Rightarrow \rho = 1.0 \times 10^3 \text{ Cm}^3$ 5
(b) Therefore, r_2 outside $\Rightarrow \frac{(1.0\times10^{-3})R^3}{3\epsilon_0(0.040)^2} = 1.88\times10^5 \Rightarrow R = 20 \text{ mm}$ 5
(c) $Q = \frac{4}{3}\pi R^3 \rho \Rightarrow Q = 3.35 \times 10^{-8} \text{ C}$ 5

Electric and Magnetic Fields

5 Q4:
$$\rho = \frac{e}{8\pi b^3} \exp\left[-\frac{r}{b}\right]$$
 C m³ where b = 2.3 x 10⁻¹⁶ m

Follow the procedure for using Gauss's law using a spherical Gaussian surface of radius r.

Steps 1 - 3 give $\Phi = (4\pi r^2)E$ where E is the magnitude of the field at r.

Step 4: Find Q_{enclosed}:

Define a thin spherical shell, radius r, thickness dr:

The charge contained in the shell is

 $dq = \rho(r)$ (volume of shell)

So, $dq = \frac{e}{8\pi b^3} exp\left[-\frac{r}{b}\right] \left[4\pi r^2 dr\right] = \frac{er^2}{2b^3} exp\left[-\frac{r}{b}\right] dr$

The total charge inside a Gaussian sphere of radius r is therefore

$$q(r) = \frac{e}{2b^3} \int_0^r r^2 \exp\left[-\frac{r}{b}\right] dr$$

The standard integral, with x=r/b gives

$$Q_{enc} = \frac{e}{2} \int_{0}^{r/b} x^{2} \exp[-x] dx = \frac{e}{2} \left[-x^{2} e^{-x} - 2 e^{-x} (x+1) \right]_{0}^{r/b}$$

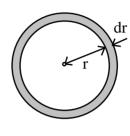
So
$$Q_{enc} = \frac{e}{2} \left[2 - \left(\frac{r}{b}\right)^{2} e^{-r/b} - 2 e^{-r/b} \left(\frac{r}{b} + 1\right) \right]$$

Putting
$$\Phi = Q_{enc}/\epsilon_0$$
 gives $E_r = \frac{e}{8\pi\epsilon_0 r^2} \left[2 - \frac{r^2}{b^2} exp\left(-\frac{r}{b}\right) - 2\left(\frac{r}{b}+1\right) exp\left(-\frac{r}{b}\right) \right]$

Putting in the numerical values gives $E = 2.13 \times 10^{21}$ N C⁻¹ at $r = 5 \times 10^{-16}$ m

This is 2.7 times smaller than the value we would get if we regarded the proton as a point charge, ($E = 5.67 \times 10^{21} \text{ N C}^{-1}$).

Round up any half marks at the end



2 for coping with the integration

2 for

applying Gauss's Law

and using correct volume

element etc.

0.5

0.5
