QUEEN MARY, UNIVERSITY OF LONDON SCHOOL OF PHYSICS AND ASTRONOMY

Structure and Properties of Functional Materials

Homework Set 6

Due Wednesday, 13 March, 2013 by 4 p.m.

Problem 1: Terms and definitions (8 marks)

Explain the following terms or concepts, giving an example of their significance in condensed matter physics:

- (a) Brillouin zone (4)
- (b) Semiconductor (4)

Problem 2: A hexagonal metal in two dimensions (17 marks)

Consider a divalent, two-dimensional, hexagonal metal:

(a) Sketch the first, second, and third Brillouin zones.	(6)
(b) Sketch the Fermi surface, and shade the occupied states, in each of the following cases:	(6)
i. A free electron gas with no band gap;	
ii. A nearly-free electron gas with a small band gap;	
iii. A band gap big enough that this system becomes an insulator.	
(c) What is the maximum bandgap (at $\mathbf{k} = \frac{1}{2}\mathbf{a}^*$, which is labelled M in hexagonal systems) such that this system remains a metal?	(5)
Problem 3: Periodicity in reciprocal space (5 marks)	

Show that the wavefunctions for states whose wavevectors differ by a reciprocal lattice vector are identical; that is, that

$$\psi_{\mathbf{k}+\mathbf{G}}(x) = \psi_{\mathbf{k}}(x).$$

Hence justify our claim in class that electronic dispersion curves are periodic in reciprocal space.

Data:

Electronic charge	$e = 1.6022 \times 10^{-19} \mathrm{C}$
Planck constant	$h = 6.626 imes 10^{-34} \mathrm{J \ s}$
	$\hbar = h/2\pi = 1.055 imes 10^{-34} { m J s}$
Boltzmann constant	$k_{\rm B} = 1.3807 \times 10^{-23} { m J} { m K}^{-1}$
Electron mass	$m = 9.109 \times 10^{-31} \mathrm{kg}$
Avogadro number	$N_{\rm A} = 6.022 \times 10^{23} { m mol}^{-1}$