QUEEN MARY, UNIVERSITY OF LONDON SCHOOL OF PHYSICS AND ASTRONOMY

Structure and Properties of Functional Materials

Homework Set 2

Due Wednesday, 23 January, 2013 by 4 p.m.

Problem 1: Terms and definitions (8 marks)

Explain the following terms or concepts, giving an example of their significance in condensed matter physics:

(a) Time-of-flight diffractometer (4)

(4)

(2)

(3)

(4)

(b) Centred unit cell

Problem 2: Allotropes of iron (16 marks)

Iron undergoes a phase transition at 912 °C from body-centred cubic (the room temperature α phase) to face-centred cubic (the γ phase). Just below the phase transition, the lattice parameter of the α phase is 2.90 Å. The atomic mass of Fe is 55.845 g mol⁻¹, and Avogadro's number is $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$.

- (a) Calculate the density of α -iron just below the phase transition.
- (b) Estimate the radius of the atoms in metallic iron.
- (c) Hence estimate the lattice parameter and density of γ -iron just above the phase transition.
- (d) Calculate the intensity $|F|^2$ and angle θ of the (211) diffraction peak below and above the transition. (7) Take f = 26 for Fe, ignore thermal motion, and assume Mo $K\alpha$ radiation, $\lambda = 0.70926$ Å, is used.

Problem 3: Choice of radiation (8 marks)

In the following experiments, would you use neutron or X-ray diffraction? Explain your reasoning.

- (a) Determination of the crystal structure of cadmium vanadate, CdV_2O_6 . (2)
- (b) Determination of the magnetic ordering in manganese(II) oxide, MnO. (2)
- (c) Measurement of diffuse scattering from silica glass, SiO₂; this sample is expected to give a diffuse (2) scattering signal up to at least $Q = 40 \text{ Å}^{-1}$.
- (d) Determination of the crystal structure of a new polymorph of a pharmaceutical compound, $C_{10}H_{13}N_5O_4$; (2) the only crystal available has dimensions $0.15 \times 0.1 \times 0.1 \text{ mm}^3$.

Problem 4: Symmetry in crystal structures (8 marks)

- (a) Show that, if a crystal structure has a mirror plane perpendicular to \mathbf{a} , its diffraction pattern will (4) have a mirror plane perpendicular to \mathbf{a}^* .
- (b) Is the converse true? That is, if a diffraction pattern has a mirror plane perpendicular to a*, is
 it necessarily true that the crystal structure has a mirror plane perpendicular to a? Explain your
 reasoning.