QUEEN MARY, UNIVERSITY OF LONDON SCHOOL OF PHYSICS AND ASTRONOMY

Structure and Properties of Functional Materials

Homework Set 8

Due Wednesday, 27 March, 2013 by 4 p.m.

Problem 1: Terms and definitions (8 marks)

Explain the following terms or concepts, giving an example of their significance in condensed matter physics:

- (a) Magnetic susceptibility
- (b) Exchange interaction

Problem 2: Hund's rules (14 marks)

(a) Complete the following table to predict the magnetic ground state of these two magnetic ions. (10)

Ion	Config.	S	L	J	<i>8</i>]	$\mu_{\rm eff}/\mu_{\rm B}$	$\mu_{\mathrm{eff}}^{\mathrm{experimental}}/\mu_{\mathrm{B}}$
Tm ³⁺	$4f^{12}$						7.61
Mn ³⁺	$3d^4$						4.90

(b) Why is the agreement with experiment so much better for the thulium than for the manganese ion? Name the phenomenon responsible for this difference. Suggest an alternative way of calculating μ_{eff} that agrees better with experiment.

Problem 3: Types of magnetic ordering (8 marks)

Consider the following sketch, showing the variation of χT with *T* for three different materials.

- (a) What type of magnetism does each material display?
- (b) What happens at $T = \tau$ to material **A**? Explain why the susceptibility of this material diverges (5) to infinity as *T* decreases towards τ .

(3)

(4)

(4)

(4)

Data:

$e = 1.6022 \times 10^{-19} \mathrm{C}$			
$h = 6.626 imes 10^{-34} \mathrm{J s}$			
$\hbar = h/2\pi = 1.055 imes 10^{-34} { m J s}$			
$k_{\rm B} = 1.3807 \times 10^{-23} { m J} { m K}^{-1}$			
$m = 9.109 \times 10^{-31} \mathrm{kg}$			
$N_{\rm A} = 6.022 \times 10^{23} { m mol}^{-1}$			
$\mu_{\rm B} = 9.274 \times 10^{-24} {\rm A} { m m}^2$			
$\mu_0=4\pi imes 10^7\mathrm{H}\mathrm{m}^{-1}$			