QUEEN MARY, UNIVERSITY OF LONDON SCHOOL OF PHYSICS AND ASTRONOMY

Structure and Properties of Functional Materials

Homework Set 5

Due Wednesday, 6 March, 2013 by 4 p.m.

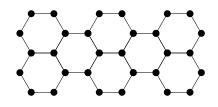
Problem 1: Terms and definitions (8 marks)

Explain the following terms or concepts, giving an example of their significance in condensed matter physics:

- (a) Nearly free electron gas
- (b) Fermi level

Problem 2: The free electron gas in two dimensions (18 marks)

Consider a single sheet of graphene:



Each atom contributes one electron to a cloud of delocalised electrons that can be modelled as a two-dimensional free electron gas.

- (a) Repeat the calculations we did in class, but in only two dimensions, to calculate the Fermi (9) wavevector k_F and the Fermi level E_F in terms of the electron density *n*. (Note that in two dimensions this is the number of electrons per unit *area*.)
 Hint: begin, as we did in class, by calculating the reciprocal space area of a single electronic state. The energy of each state, in terms of its wavevector, will be the same as in 3D.
- (b) Calculate *n* for a graphene sheet in which the carbon-carbon bonds are $\ell = 1.4$ Å long. Hint: you will need to do a bit of geometry to show that the area of each hexagon is $(3\sqrt{3}/2)\ell^2$. Each hexagon contains six atoms, but each atom is shared between three hexagons, so the area per atom is half the area of a hexagon.
- (c) Hence calculate numerical values for k_F and E_F for graphene.

(2)

(7)

(4)

(4)

Problem 3: Bulk modulus of metals (14 marks)

(a) The total energy of a free-electron gas (at 0 K) can be calculated by integrating over each occupied (4) state:

$$E_{\text{total}} = \int_0^{k_{\text{F}}} E(k)g(k).$$

Evaluate this integral to find the total energy. Express your answer in terms of $nE_{\rm F}$.

(b) The bulk modulus is a measure of the pressure needed to change the volume of a solid by a set (6) amount; it is defined by

$$B = -V\frac{\partial P}{\partial V}$$

so that the higher the bulk modulus, the harder it is to compress a solid. (Note that the negative sign is needed to keep *B* positive, since *increased* pressure will always cause a *decrease* in volume.) The bulk modulus is related to the total energy of a solid by

$$B = -V \frac{\partial^2 E}{\partial V^2}$$

(where *E* is energy and *V* is volume). Evaluate this using your energy from part (a) to show that the bulk modulus of a free-electron gas is $B = \frac{2}{3}nE_F$.

Hint: the electron density n is just N/V, where N is the total number of electrons.

(c) Evaluate the value of *B* from (b) numerically for potassium. In the free-electron gas model, as you (should have) found in this week's tutorial, potassium has a Fermi level of $E_F = 2.04 \text{ eV}$ and an electron density of $n = 0.013 \text{ Å}^{-3}$. Compare your answer to the experimental bulk modulus of 3.1 GPa. What can you conclude about the main force resisting compression in this metal?

(4)

Data:

Electronic charge	$e = 1.6022 \times 10^{-19} \mathrm{C}$
Planck constant	$h = 6.626 imes 10^{-34} { m J s}$
	$\hbar = h/2\pi = 1.055 imes 10^{-34} { m J s}$
Boltzmann constant	$k_{\rm B} = 1.3807 \times 10^{-23} { m J} { m K}^{-1}$
Electron mass	$m = 9.109 \times 10^{-31} \mathrm{kg}$
Avogadro number	$N_{ m A} = 6.022 imes 10^{23} { m mol}^{-1}$