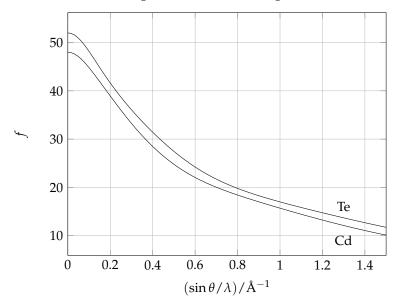
QUEEN MARY, UNIVERSITY OF LONDON SCHOOL OF PHYSICS AND ASTRONOMY


Structure and Properties of Functional Materials

Exercise Set 2

Friday, 18 January, 2013

1. For discussion:

- (a) Explain why the simple cubic structure is rare, but the rock salt structure very common.
- (b) Explain why we say that the rock-salt structure is based on a face-centred cubic lattice, not a simple cubic lattice.
- (a) Find the number of nearest neighbours and distance to these nearest neighbours (in terms of the cell parameter *a*) for an atom in each of the following structures: simple cubic, body-centred cubic, face-centred cubic, diamond.
 - (b) Repeat the calculation, but this time for *second*-nearest neighbours.
 - (c) Finally calculate the ratio between the second-nearest and nearest neighbour distances. For which structure is this ratio the lowest?
- 3. Cadmium telluride, CdTe, is an important material for photovoltaic manufacture. It has the cubic zinc blende structure. At room temperature, the lattice parameter is a = 6.48 Å.
 - (a) Calculate the X-ray structure factors F(111), F(200), and F(733) and hence the intensities $|F|^2$ one would observe in experiment for each of these peaks. The X-ray form factors for Cd and Te are given below. Ignore the effects of thermal motion.
 - (b) Why is $|F(733)|^2$ smaller than $|F(111)|^2$? Would $|F(733)|^2$ still be much smaller than $|F(111)|^2$ if neutron instead of X radiation were used? Why or why not?
 - (c) Why is $|F(200)|^2$ smaller than $|F(111)|^2$? Would $|F(200)|^2$ still be much smaller than $|F(111)|^2$ if neutron instead of X radiation were used? Why or why not?
 - (d) Why would it be difficult to investigate this structure using neutron diffraction?

- 4. The following lattices are, by convention, not used to describe crystal structures. In each case explain why not.
 - (a) Body-centred triclinic
 - (b) Base-centred cubic
 - (c) Face-centred tetragonal