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1. For discussion:

(a) Explain why the simple cubic structure is rare, but the rock salt structure very common.

Solution: The simple cubic structure, where all atoms are identical, is unstable with respect
to shearing in the {100} planes (or, equivalently, to tension along the 〈110〉 directions). This
is because this strain doesn’t change the existing nearest-neighbour distances, but brings
more atoms closer together, resulting in an energetic benefit.

On the other hand, in the rock salt structure, the ions brought closer together by shearing
have the same charge and repel one another. Thus this structure is stable to shear strain.
The crucial difference is that there are long-range repulsive interactions in typical solids
with the rock-salt structure, but none in the simple cubic.

This is illustrated in the figures below. (As a side point of interest, the solid and dotted
arrows represent the two ways of looking at this deformation: as shear or tensile strain
respectively.)

Simple cubic Rock salt

(b) Explain why we say that the rock-salt structure is based on a face-centred cubic lattice, not a
simple cubic lattice.

Solution: Certainly if we imagined that every atom was identical, we would have a simple
cubic lattice. But in fact we have two different sorts of atom in the rock-salt structure. Since
every point in a lattice must be identical, we construct this by combining a motif of two
atoms (one of each type) with an appropriate lattice. Focusing on just one type of atom
shows that this lattice is in fact face-centred cubic. (An appropriate motif is, e.g., A at (0, 0, 0),
B at ( 1

2 , 0, 0).)

2. (a) Find the number of nearest neighbours and distance to these nearest neighbours (in terms of the
cell parameter a) for an atom in each of the following structures: simple cubic, body-centred
cubic, face-centred cubic, diamond.

(b) Repeat the calculation, but this time for second-nearest neighbours.

(c) Finally calculate the ratio between the second-nearest and nearest neighbour distances. For
which structure is this ratio the lowest?



Solution:

Structure Nearest neighbours Second-nearest neighbours Ratio
Number Distance Number Distance

Simple cubic 6 a 12
√

2a
√

2 = 1.414
Body-centred cubic 8

√
3/2a 6 a 2/3

√
3 = 1.155

Face-centred cubic 12
√

2/2a 6 a
√

2 = 1.414
Diamond 4

√
3/4a 12

√
2/2a 2/3

√
6 = 1.633

The ratio is lowest by far for the bcc structure, in which nearest and second-nearest neighbours
are almost the same distance apart. This is one reason why this structure is common for metals
even though it is not closest packed.

3. Cadmium telluride, CdTe, is an important material for photovoltaic manufacture. It has the cubic
zinc blende structure. At room temperature, the lattice parameter is a = 6.48 Å.

(a) Calculate the X-ray structure factors F(111), F(200), and F(733) and hence the intensities |F|2
one would observe in experiment for each of these peaks. The X-ray form factors for Cd and Te
are given below. Ignore the effects of thermal motion.

Solution: The basic equation we need here is

F = ∑ f exp
(
2πi(hx + ky + lz)

)
(ignoring thermal motion). The atomic positions (x, y, z) are given (from the cheat sheet) by

Cd: (0, 0, 0) ( 1
2 , 1

2 , 0) ( 1
2 , 0, 1

2 ) (0, 1
2 , 1

2 )

Te: ( 1
4 , 1

4 , 1
4 ) ( 3

4 , 3
4 , 1

4 ) ( 3
4 , 1

4 , 3
4 ) ( 3

4 , 3
4 , 1

4 )

The form factors f can be read from the diagram once we know the value of sin θ/λ, which
we get from Q = 4π sin θ/λ. Indeed, since CdTe has a cubic structure,

sin θ

λ
=

Q
4π

=

√
h2 + k2 + l2

4π
a∗ =

√
h2 + k2 + l2

2a
Putting this all together for (111) gives

sin θ

λ
=

√
12 + 12 + 12

2(6.48)
= 0.134 Å−1 fCd ≈ 43 fTe ≈ 46

and hence

F(111) = 43
(

exp
(
2πi(1 · 0 + 1 · 0 + 1 · 0)

)
+ exp

(
2πi(1 · 1

2 + 1 · 1
2 + 1 · 0)

)
+ exp

(
2πi(1 · 1

2 + 1 · 0 + 1 · 1
2 )
)
+ exp

(
2πi(1 · 0 + 1 · 1

2 + 1 · 1
2 )
))

+ 46
(

exp
(
2πi(1 · 1

4 + 1 · 1
4 + 1 · 1

4 )
)
+ exp

(
2πi(1 · 3

4 + 1 · 3
4 + 1 · 1

4 )
)

+ exp
(
2πi(1 · 3

4 + 1 · 1
4 + 1 · 3

4 )
)
+ exp

(
2πi(1 · 1

4 + 1 · 3
4 + 1 · 3

4 )
))

= 43(1 + 1 + 1 + 1) + 46(−i− i− i− i) = 172− 184i

so |F(111)|2 = 1722 + 1842 = 6.3× 104.

Similarly, for (200), sin θ/λ = 0.154 Å−1 so fCd ≈ 42 and fTe ≈ 45, giving F(200) =

168− 180 = −12 and |F(200)|2 = 1.4× 102.
For (733), sin θ/λ = 0.631 Å−1 so fCd ≈ 24 and fTe ≈ 22, giving F(733) = 96 + 88i and
|F(733)|2 = 1.7× 104.
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(b) Why is |F(733)|2 smaller than |F(111)|2? Would |F(733)|2 still be much smaller than |F(111)|2
if neutron instead of X radiation were used? Why or why not?

Solution: The main difference between F(733) and F(111) is that the atomic form factors f
are substantially lower for (733) since sin θ/λ is higher. Since neutron scattering lengths
do not change appreciably with angle (because the nucleus is so much smaller than the
electron cloud), we would expect F(733) and F(111) to be closer in magnitude in this case.

(c) Why is |F(200)|2 smaller than |F(111)|2? Would |F(200)|2 still be much smaller than |F(111)|2
if neutron instead of X radiation were used? Why or why not?

Solution: As can be shown by drawing the (200) planes, in this peak there is destructive
interference between layers of Cd atoms and layers of Te atoms. Since these have almost the
same form factor, the destructive interference is almost complete, leaving very low observed
intensity. (In the limit as the form factors become identical, we have the diamond structure,
for which the (200) peak is systematically absent – see next week’s lectures!)

The reason the form factors are similar is that Cd and Te have almost the same number
of electrons. Since neutron scattering lengths do not vary systematically with number of
electrons in the same way as X-ray form factors, the neutron scattering lengths of Cd and Te
are likely to be more different, lessening the effect of the destructive interference and again
making F(111) and F(200) more similar in magnitude. (In fact, the naturally occurring
distribution of Te has scattering length 5.8 fm while the common isotope 114Cd (natural
abundance 28.7%) has scattering length 7.5 fm. See below for why it would be necessary to
control the isotopic composition of the Cd.)

(d) Why would it be difficult to investigate this structure using neutron diffraction?

Solution: Isotopic substitution of the Cd would be required, since naturally occurring Cd
absorbs neutrons very effectively (which is why cadmium rods are used in nuclear reactors).
The culprit is the isotope 113Cd.
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4. The following lattices are, by convention, not used to describe crystal structures. In each case explain
why not.
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(a) Body-centred triclinic

Solution: There’s no point in having the centring at all – it doesn’t emphasise any symmetry,
because there is none! Just use a primitive triclinic cell.

(b) Base-centred cubic

Solution: Base-centred cells have an extra lattice point at the centre of a single face. This
would break the cubic symmetry which says that every face has to be the same (they are
related by the compulsory threefold axes). This is not a cubic lattice at all but a primitive
tetragonal lattice.

(c) Face-centred tetragonal

Solution: We can redraw this as a smaller body-centred tetragonal lattice with lattice
vectors ( 1

2 a + 1
2 b, 1

2 a− 1
2 b, c) – draw this to see how it works.
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