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Density-Functional Theory I

Hohenberg & Kohn (Phys. Rev. B, 136, 864 (1964)):

Theorem

H–K Theorem 1 There is a one-to-one mapping between the
electronic density and the external potential, and hence, the
Hamiltonian:

ρ(r) ⇐⇒ H

Proof is by reductio ad absurdum.
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Density-Functional Theory II

Consider the Hamiltonian with the electron–nuclear potential vext
(this is sometimes called the external potential):

H = −1

2

N∑
i

∇2
i +

∑
i<j

1

rij
+

N∑
i

vext(ri) (1)

Let v 1
ext and v 2

ext arise from the same density.

We therefore have two Hamiltonians H1 and H2 with the
same ground state density but with different ground state
wavefunctions, Ψ1 and Ψ2.
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Density-Functional Theory III

Consider H1: The variational principle states that

E 0
1 < 〈Ψ2|H1|Ψ2〉 = 〈Ψ2|H2|Ψ2〉+ 〈Ψ2|H1 −H2|Ψ2〉

= E 0
2 + 〈Ψ2|v 1

ext − v 2
ext|Ψ2〉

= E 0
2 +

∫
ρ(r)

[
v 1
ext(r)− v2ext(r)

]
dr

Similarly E 0
2 < E 0

1 +
∫
ρ(r)

[
v 2
ext(r)− v1ext(r)

]
dr

Adding the inequalities:

E 0
1 + E 0

2 < E 0
2 + E 0

1 →←

Hence ρ(r) ⇐⇒ H
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Density-Functional Theory IV

E. Bright Wilson’s observation: To know the Hamiltonian we need
to know the number of electrons and position and charge of the
nuclei. These can be obtained from the density:

N =
∫
ρ(r)dr

Position and charge of nuclei can be obtained from the cusps:

∂

∂r
〈ρ(r)〉sph

∣∣∣∣
r=0

= −2Z 〈ρ(0)〉sph

So ρ completely determines the Hamiltonian and therefore the
ground-state energy (and also all excited state energies!).
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Density-Functional Theory V

What the Hohenberg–Kohn theorem allows us to do is (formally)
write the energy as a functional of the density.

E = E [ρ] = T [ρ] + Vee[ρ] + Ven[ρ]

= F [ρ] +

∫
ρ(r)vext(r)dr

This leads to the second Hohenberg–Kohn theorem:

Theorem

H–K Theorem 2 If ρ̃ is an approximate density then

E [ρ] ≤ E [ρ̃]
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Density-Functional Theory VI

It’s easy to see how this theorem arises:

ρ̃ gives rise to a unique potential ˜vext, and hence a
Hamiltonian H̃ and therefore to a ground state wavefunction
Ψ̃.

Using the variational principle

E 0 = E [ρ] ≤ 〈Ψ̃|H|Ψ̃〉 = F [ρ̃] +

∫
ρ̃(r)vext(r)dr = E[ρ̃]

So in principle we can search over all N-electron densities to find
the one that leads to the lowest energy.
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Density-Functional Theory VII

In practice searching over all N-electron densities is next to
impossible. How do we do this? If we are given a trial N-electron
density ρ̃, how can we obtain the corresponding external potential

˜vext? This can be done for a one or two electron system (Ex.
How?) but not in general.
All this would have been a curiosity had it not been for a paper by
Kohn & Sham published in 1965 (Phys. Rev. A 140, 1133) which
gave us what we now know as Kohn–Sham DFT.
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Hartree–Fock again I

Before getting on with DFT, let’s have another look at
Hartree–Fock, but this time, from a slightly different angle.
The HF energy can be written as

EHF = min
|ΨSD〉→N

〈ΨSD|T̂ + V̂ne + V̂ee|ΨSD〉

= min
|ΨSD〉→N

〈ΨSD|T̂ + vext + V̂ee|ΨSD〉

Here |ΨSD〉 is our Slater determinant that yields an N electron
density. In the second line I have used our notation for the
electron–nuclear potential: the external potential.
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Hartree–Fock again II

This minimization procedure gives rise to an effective Hamiltonian
— the Fock operator:

f HF(i) = −1

2
∇2

i −
∑
α

Zα
riα

+ vHF(i) (2)

The HF potential is an effective potential that contains the
effective electron–electron Coulomb and exchange interactions (no
correlation!). To get us ready for Kohn–Sham theory, we will make
a few changes to the above equation.
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Hartree–Fock again III

First of all recognise that the second term in the Fock
operator is just the external potential: vext

Next, split the HF operator into its Coulomb and Exchange
parts. These are usually labeled by ‘J’ and ‘X’, respectively:

vHF = vJ + vX

So our Fock operator is now written as

f HF(i) = −1

2
∇2

i + vext(i) + vJ(i) + vX(i) (3)
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Hartree–Fock again IV

In some sense we can say that the HF ground state energy is a
functional of the density and can be written as

EHF[ρHF] = TS[ρHF]+J[ρHF]+EHF
x [ρHF]+

∫
ρHF(r)vext(r)dr (4)

where the non-interacting Kinetic energy functional is

TS[ρHF] = −1

2

N∑
i=1

〈χi |∇2
i |χi 〉 (5)

which is not strictly a functional of the density, but since the
density is implicitly a functional of the orbitals we can still think of
the KE functional as a density functional.
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Hartree–Fock again V

The Coulomb energy functional is defined as

J[ρHF] =
1

2

∫∫
ρHF(r1)ρHF(r2)

r12
dr1dr2 (6)

The exchange energy functional is non-local and is, like the KE
functional, dependent on the HF orbitals:

EHF
x [ρHF] = −

∑
a∈occ

∑
b∈occ

∫∫
dx1dx2χ

∗
a(1)

χ∗b(2)P12χb(2)

r12
χa(1)

(7)
where P12 is the permutation operator.
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Hartree–Fock again VI

Looked at in this way HF theory is a kind of density functional
theory, but one that is not, even in principle, exact (except for
1-electron systems).
In this formulation of HF theory, we define the HF energy as

EHF = min
ρ→|ΨSD〉,N

EHF[ρ]

That is, we minimize the functional EHF[ρ] over all N-electron
densities that arise from a Slater determinant. We need to impose
the N-electron constraint and this is done using Lagrange
multipliers. We minimize the functional:

Ω[ρ] = EHF[ρ]−
N∑
i ,j

εij(〈χi |χj〉 − δij)
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Hartree–Fock again VII

Since Ω[ρ] really is a functional of the orbitals, we need to perform
the variation over the orbitals and use the chain rule:

δ

δχi (r)
=

δ

δρ(r)

δρ(r)

δχi (r)
(8)

I do not want to get is bogged down with functional derivatives,
but one example of how its done could be illuminating:
First of all, since ρ(r) =

∑N
i=1 χ

∗
i (r)χi(r) we get

δρ(r)

δχ∗i (r)
= χi (r)
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Hartree–Fock again VIII

Now consider the functional derivative of J[ρ]:

δJ[ρ]

δχ∗i (r)
=
δJ[ρ]

δρ(r)

δρ(r)

δχ∗i (r)

=
δ

δρ(r)

[
1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
drdr′

]
× χi (r)

=

∫
ρ(r′)

|r− r′|
dr′χi(r)

= vJ(r)χi (r)

Do this for all terms and we get back our Fock equation (in a
generalised form).
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Kohn–Sham DFT I

In 1965 Walter Kohn & Lu Sham put DFT on a practical footing
through what is now known as Kohn–Sham DFT. The begain by
postulating the existence of a non-interacting system with external
potential vS that yields the exact density. That is

H =
∑
i

(
−1

2
∇2

i + vS(i)

)
has a ground state single determinant solution with density ρ.
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Kohn–Sham DFT II

We know how to write the kinetic energy of this system:

TS[ρ] =
N∑
i

−1

2
〈χi |∇2|χi 〉

Now write the Hohenberg–Kohn functional as

F [ρ] = T [ρ] + Vee[ρ]

= TS[ρ] + J[ρ] + Exc[ρ]

where this eXchange-Correlation functional is defined as

Exc[ρ] = (T [ρ]− TS[ρ])− (Vee[ρ]− J[ρ])
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Kohn–Sham DFT III

In analogy with the Hartree–Fock functional, we find the ground
state energy by minimizing the Kohn–Sham energy functional
defined as:

E [ρ] = TS[ρ] + J[ρ] + Exc[ρ] +

∫
vext(r)ρ(r)dr (9)

subject to the orthonormality constraints

〈χi |χj〉 = δij .

As before, we include these constraints using Lagrange multipliers
and minimize

Ω[ρ] = E [ρ]−
N∑
i ,j

εij(〈χi |χj〉 − δij)
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Kohn–Sham DFT IV

This gives us the Kohn–Sham equations (no proof, but it is a
reasonably straightforward exercise in functional differentiation):(

−1

2
∇2

i + vS(r)

)
χi = εiχi

where the effective potential is defined as

vS(r) = vJ(r) + vext(r) + vxc(r)

The various potentials that enter this expression are:

vJ: The Coulomb potential defined as:

vJ(r) =

∫
ρ(r′)

|r− r′|
dr′
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Kohn–Sham DFT V

vext: The external potential, i.e., the electron-nuclear
potential:

vext(r) = −
∑
α

Zα
|r− Rα|

vxc: The exchange-correlation potential which is defined
through the exchange-correlation energy Exc[ρ] as:

vxc(r) =
δExc[ρ]

δρ
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Kohn–Sham DFT VI

In a sense, what Kohn & Sham did was to sweep all the
unknowns under the rug. But they did this intelligently as they
had a good idea of how to approximate the unknown bits: the
exchange-correlation energy and its functional derivative.

Also, they knew that their formalism was in principle exact as
they had proved various theorems to that effect.

It turned out that their proofs were not mathematically sound,
but this was fixed by others.

The rest of the DFT story is how we find the
exchange-correlation functional Exc[ρ].
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Density Functionals I

Exchange correlation functionals are usually written in the form

Exc[ρ] =

∫
ρ(r)εxc(ρ(r),∇ρ(r), · · ·)dr (10)

where εxc(ρ(r),∇ρ(r), · · ·) can be regarded as the
exchange-correlation density.
We usually split the exchange-correlation density into its exchange
and correlation parts:

εxc(ρ(r),∇ρ(r), · · ·) = εx(ρ(r),∇ρ(r), · · ·) + εc(ρ(r),∇ρ(r), · · ·)
(11)

This separation is convenient for we can then think of using
well-understood approximations for each of these.
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LDA I

The first of the many functionals is the local density approximation
or LDA. In this approximation the exchange-correlation density
depends on the electron density alone (no dependence on gradients
etc.):

Exc[ρ] =

∫
ρ(r)εLDA

xc (ρ(r))dr (12)

The Slater approximation is used for the exchange-energy density:

εSx(ρ(r)) = −3

4

(
3ρ(r)

π

)3/2

Using this we get the Slater exchange functional:

ES
x [ρ] = −3

4

(
3

π

)3/2 ∫
ρ4/3(r)dr = −Cx

∫
ρ4/3(r)dr
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LDA II

Paired with this is a correlation functional parameterized on very
accurate quantum Monte-Carlo (QMC) calculations of the energy
of the homogeneous free electron gas as a function of density.
There are a variety of correlation parameterizations. These differ
by the choice of QMC energies used or by the interpolation scheme
used in the parameterization (the QMC energies are calculated at a
set of densities so some scheme is required to interpolate to all
densities).
Common choices of the correlation functional are:

PW91c The Perdew–Wang (1992) parameterization (called
pw91lda in NWChem.

VWN The Voski–Wilk–Nusair (1980) parameterization.

So what is called the LDA translates into a combination of the
Slater exchange functional and one of these correlation functionals.
The actual choice will vary with program.
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LDA III

73

ε 2(ρ )(r )

ε 1(ρ( ))rxc

xc

from homogeneous
electron gas

from inhomogeneous
system

∫= rdrrE xc
LDA
XC

!!!

))(()(][ ρερρ

1ρ( )r

2ρ( )r

)r(

)r()r(
!

!!

ρ
ρ−ρ

=ξ βα
. (6-16)

ξ attains values from 0 (spin compensated) to 1 (fully spin polarized, i. e., all electrons
have only one kind of spin). For details see in particular Appendix E of Parr and Yang,
1989. In the following we do not differentiate between the local and the local spin-density
approximation and use the abbreviation LDA for both, unless otherwise noted.

How do we interpret the LDA for the exchange-correlation functional? Let us consider
the general case of an open-shell atom or molecule. At a certain position r

!

 in this system
we have the corresponding spin densities )r(

!

αρ  and )r(
!

βρ . In the local spin-density ap-
proximation we now take these densities and insert them into equation (6-15) obtaining

)r(EXC
!

. Thus, we associate with the densities )r(
!

αρ  and )r(
!

βρ  the exchange and corre-
lation energies and potentials that a homogeneous electron gas of equal, but constant den-
sity and the same spin polarization ξ would have. This is now repeated for each point in
space and the individual contributions are summed up (integrated) as schematically indi-
cated in Figure 6-2. Obviously, this approximation hinges on the assumption that the ex-
change-correlation potentials depend only on the local values of )r(

!

αρ  and )r(
!

βρ .
This is a very drastic approximation since, after all, the density in our actual system is

certainly anything but constant and does not even come close to the situation characteristic
of the uniform electron gas. As a consequence, one might wonder whether results obtained
with such a crude model will be of any value at all. Somewhat surprisingly then, experience
tells us that the local (spin) density approximation is actually not that bad, but rather deliv-

Figure 6-2. The local density approximation.

6.4  The Local Density and Local Spin-Density Approximations

1(r )ρ
2(r )ρ xc 1( (r ))ε ρ

xc 2( (r ))ε ρ

LDA
XC xcE [ ] (r) ( (r)) drρ = ρ ε ρ∫ ! ! !

From Koch & Holthausen A Chemist’s Guide to density Functional Theory

(2001).
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LDA IV

Generalization to open-shell systems (local spin-density
approximation (LSD)): the exchange-correlation density depends
on the spin-up and spin-down densities:

Exc[ρα, ρβ] =

∫
ρ(r)εLDA

xc (ρα(r), ρβ(r))dr (13)

GOOD LDA is better than HF. Good equilibrium geometries,
harmonic frequencies.

BAD Energetics very poor. Errors in atomization energies 36
kcal/mol. (HF has errors of 78 kcal/mol on same set of
molecules)
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GGA I

In the generalized gradient approximations the exchange-correlation
density is dependent on the density and its gradient.

Exc[ρ] =

∫
ρ(r)εGGA

xc (ρ(r),∇ρ(r))dr

As before, we split the exchange-correlation density into its
exchange and correlation parts:

εGGA
xc (ρ(r),∇ρ(r)) = εGGA

x (ρ(r),∇ρ(r)) + εGGA
c (ρ(r),∇ρ(r))

The exchange part of all GGAs takes the form

EGGA
x [ρ] =

∫
ρ(r)εLDA

x (ρ(r))Fx(s)dr
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GGA II

Fx(s) is sometimes called the enhancement factor and is written
as a function of the reduced density gradient defined as

s(r) =
|∇ρ(r)|

2(3π2)1/3ρ4/3(r)
.

Note that in general all quantities will depend on spin.

This definition is used so as to make s dimensionless (Q: Show
this!) and means that s will be large when the gradient of the
density is large (where the LDA should fail) and also where the
density is small (in the region of the density tails).
Two of the common exchange enhancement factors are
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GGA III

Becke, 1988 (B88)

FB88
x (s) = 1− βs2

1 + 6βs sinh−1 s

Becke fitted the parameter β = 0.0042 to reproduce known
exchange energies of rare gas atoms. This particular form for
the enhancement factor was chosen to obey a few exact
relations.

Perdew, Burke & Ernzerhof, 1996 (PBE)

FPBE
x (s) = 1 + κ− κ

1− µs2/κ

In this functional all parameters were obtained theoretically.
κ = 0.804. Most physcists use this exchange functional.
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Hybrid Functionals I

The exchange contribution to the energy is much larger than the
correlation energy (which is why HF is not too bad!). So why not
use the best exchange energy we have — from HF, usually termed
exact exchange in this context — and combine it with the best
correlation funtional available:

Exc[ρ] = EHF
x [ρ] + Ec[ρ]

This turns out to be better than HF, but much worse than the
GGAs.
The precise reason for this somewhat poor behaviour has to do with the nature

of the exchange hole. The exact x-hole is local, but the HF x-hole is non-local.

So it must be corrected by a non-local correlation hole, but the DFT

correlation hole is also local and so cannot correct the HF x-hole. This is all

very interesting but also very technical.
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Hybrid Functionals II

In 1993, Becke proposed a three-parameter semi-empirical
functional that cured this problem. The general idea is to mix
some fraction of HF exchange with DFT exchange:

Ehybrid
xc = aEHF

x + (1− a)EGGA
x + EGGA

c

The B3LYP is the most widely used of these and is a slight
modification of Becke’s 1993 proposal made the following year by
Stephens and others:

EB3LYP
xc = ESVWN

xc + a0(EHF
x − ES

x ) + ax(EB88
x − ES

x ) + ac(ELYP
c − EVWN

c )

A better choice (in my opinion) is the PBE0 functional (sometimes
called PBE1PBE) which mixes PBE with 20% HF exchange.
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Jacob’s Ladder I

John Perdew has summarised the state of DFT using the Biblical
picture of Jacob’s Ladder: At the base we have the LDA and at
the top, in the heaven of chemical accuracy (interesting concept -
what is Physical Accuracy?) we have some unknown functional.
Here’s the whole Ladder...
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Jacob’s Ladder II

CHEMICAL HEAVEN
1 corr-hyper-GGA: Modifies the hyper-GGAs by including

correlation through range-separation. This is currently done at
the RPA level.

2 hyper-GGA: Adds exact exchange using range-separation.
Leads to functionals that can fix (part of) the charge-transfer
problem of most DFT functionals. CamB3LYP

3 meta-GGA: ρ,∇ρ,∇2ρ, τ , here τ = 1
2

∑
a∈occ |∇χa|2 is the

Kohn–Sham orbital kinetic energy density. TPSS

4 GGA: ρ,∇ρ. PBE

5 LDA,LSD: ρ

INACCURATE HELL
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Meaning of the KS orbital energies I

The Kohn–Sham non-interacting system was initially regarded
as no more than a device to facilitate the solution of the
Schrödinger equation.

The orbitals and orbital eigenvalues were not taken to mean
anything with one exception:

εHOMO = −I : Perdew, Parr, Levy and Balduz (Phys. Rev.
Lett. 49. 1691 (1982)) had shown that the energy of the
highest occupied molecular orbital was exactly equal to the
negative of the vertical Ionization energy.

However, there was a lot of empirical evidence that the
Kohn–Sham orbital energies were closely related to the
experimental ionization energies.

But they were generally shifted w.r.t. the experimental values.
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Meaning of the KS orbital energies II

In 2001, Chong, Gritsenko and Baerends (J. Chem. Phys.
116, 1760) showed that for the exact XC potential (they used
a method called SAOP that had many of the properties of the
exact XC potential):

Ik ≈ −εk

With the relation being exact for the HOMO.

In practice this means that we can use the KS orbital energies
as a good approximation to the experimental excitation levels
of our system, but with a constant, and possibly large, shift.

Q: Why are the orbital energies shifted?

First, some evidence for the statements made above.
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Meaning of the KS orbital energies III

sets, including supplementation with diffuse functions, the
maximum difference in TDLDA/LB94 excitation energies
among these auxiliary basis sets was 0.11 eV, for the first six
states of formaldehyde. In one test on N2, ~unbalanced!
supplementation of the auxiliary basis set resulted in differ-
ences of a few tenths of an eV, with the TDLDA/LB94 func-
tional. This level of precision of the TDLDA/LB94 results is
adequate for the present work. In contrast, the TDLDA/LDA
results do not appear to be significantly affected by the ad-
dition of diffuse functions to the auxiliary basis sets used
~observed differences being only on the order of a few hun-
dredths of an eV!, presumably because of the shorter range
of the LDA potential.

The deMon ‘‘extrafine’’ ‘‘random’’ grid ~32 radial and
194 angular points per atom! was used throughout. For
CH2O and C2H4, calculations using ‘‘nonrandom’’ grids,
with C2v and D2h symmetry, respectively, were used to con-
firm assignments with the LB94 potential because symmetry
breaking was observed with the ‘‘random’’ grid, in this case,
for some of the higher-lying unoccupied orbitals. ~Differ-
ences between excitation energies with these two grids were
insignificant — typically about 0.01 eV or less.!

The SCF calculations were performed with version 1.2
of the deMon-KS module,42 to which we added the LB94
potential.26 The SCF convergence criteria were a change of
less than 1028 a.u. in the charge density fitting coefficients
and, simultaneously, less than 1028 hartree in the total en-
ergy. We used the LDA energy expression for both the LDA
and the LB94 SCF calculations. In the case of the LB94
potential, this is simply a convenient and harmless choice,
which only affects the meaning of the SCF convergence cri-
terion, since only the density ~or more exactly the orbitals,
orbital energies, and occupations!, but not the total energy,
enters into the TD-DFRT calculations.

IV. RESULTS AND DISCUSSION
Four small, well-studied molecules, namely N2, CO,

CH2O, and C2H4, have been chosen as test molecules in
order to evaluate the quality of the TDLDA/LDA and
TDLDA/LB94 excitation energies. These molecules may
also be considered as prototypes for studying the (n ,p*) and
(p ,p*) transitions important for organic photochemistry.
Comparison is made with published single-particle excitation
energies from high-quality ab initio methods and with ex-
periment. This comparison covers both singlet and triplet
states, over a fairly wide range of energies ~almost up to the
ionization potential.! Theory predicts a number of highly ex-
cited states which either do not appear to have been observed
experimentally or for which accepted experimental excita-
tion energies are not available. For this reason, our primary
comparison is against the ab initio calculations. The choice
of ab initio results against which to compare was governed
by the desire to use, insofar as possible, a single set of results
for each molecule, that would give reasonably accurate val-
ues for all the states considered. The selected calculations are
in good agreement with experiment. The state-by-state com-
parison between the results of different calculations was
made by identifying the nth state of a given symmetry from
one calculation with the nth state of the same symmetry in

the other calculation, with the TD-DFRT N-electron term
symbol being determined according to the procedure de-
scribed in Sec. II. For ethylene, only excitations out of the
1b3u(p) orbital are considered, and the same state-by-state
comparison scheme used for the other molecules is applied
to this p-excitation manifold. The results of these compari-
sons, for the four molecules, are shown in Figs. 1, 2, 3, and
4.

FIG. 1. Correlation plot comparing TD-DFRT results with the multirefer-
ence coupled cluster singles and doubles ~MRCCSD! results of Ref. 53 for
the first 35 vertical excitation energies ~not counting degeneracies! of N2.
Experimental values taken from Ref. 53 are also shown.

FIG. 2. Correlation plot comparing TD-DFRT results with second-order
polarization propagator ~SOPPA! (Sfi1 results from Table II of Ref. 54! for
the first 23 vertical excitation energies ~not counting degeneracies! of CO.
Experimental values taken from Ref. 54 are also shown.

4442 J. Chem. Phys., Vol. 108, No. 11, 15 March 1998 Casida et al.

Downloaded 01 Oct 2001 to 128.175.112.80. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

Casida, Jamorski,
Casida & Salahub,
J. Chem. Phys.
108, 4439 (1998).
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Meaning of the KS orbital energies IV

sets, including supplementation with diffuse functions, the
maximum difference in TDLDA/LB94 excitation energies
among these auxiliary basis sets was 0.11 eV, for the first six
states of formaldehyde. In one test on N2, ~unbalanced!
supplementation of the auxiliary basis set resulted in differ-
ences of a few tenths of an eV, with the TDLDA/LB94 func-
tional. This level of precision of the TDLDA/LB94 results is
adequate for the present work. In contrast, the TDLDA/LDA
results do not appear to be significantly affected by the ad-
dition of diffuse functions to the auxiliary basis sets used
~observed differences being only on the order of a few hun-
dredths of an eV!, presumably because of the shorter range
of the LDA potential.

The deMon ‘‘extrafine’’ ‘‘random’’ grid ~32 radial and
194 angular points per atom! was used throughout. For
CH2O and C2H4, calculations using ‘‘nonrandom’’ grids,
with C2v and D2h symmetry, respectively, were used to con-
firm assignments with the LB94 potential because symmetry
breaking was observed with the ‘‘random’’ grid, in this case,
for some of the higher-lying unoccupied orbitals. ~Differ-
ences between excitation energies with these two grids were
insignificant — typically about 0.01 eV or less.!

The SCF calculations were performed with version 1.2
of the deMon-KS module,42 to which we added the LB94
potential.26 The SCF convergence criteria were a change of
less than 1028 a.u. in the charge density fitting coefficients
and, simultaneously, less than 1028 hartree in the total en-
ergy. We used the LDA energy expression for both the LDA
and the LB94 SCF calculations. In the case of the LB94
potential, this is simply a convenient and harmless choice,
which only affects the meaning of the SCF convergence cri-
terion, since only the density ~or more exactly the orbitals,
orbital energies, and occupations!, but not the total energy,
enters into the TD-DFRT calculations.

IV. RESULTS AND DISCUSSION
Four small, well-studied molecules, namely N2, CO,

CH2O, and C2H4, have been chosen as test molecules in
order to evaluate the quality of the TDLDA/LDA and
TDLDA/LB94 excitation energies. These molecules may
also be considered as prototypes for studying the (n ,p*) and
(p ,p*) transitions important for organic photochemistry.
Comparison is made with published single-particle excitation
energies from high-quality ab initio methods and with ex-
periment. This comparison covers both singlet and triplet
states, over a fairly wide range of energies ~almost up to the
ionization potential.! Theory predicts a number of highly ex-
cited states which either do not appear to have been observed
experimentally or for which accepted experimental excita-
tion energies are not available. For this reason, our primary
comparison is against the ab initio calculations. The choice
of ab initio results against which to compare was governed
by the desire to use, insofar as possible, a single set of results
for each molecule, that would give reasonably accurate val-
ues for all the states considered. The selected calculations are
in good agreement with experiment. The state-by-state com-
parison between the results of different calculations was
made by identifying the nth state of a given symmetry from
one calculation with the nth state of the same symmetry in

the other calculation, with the TD-DFRT N-electron term
symbol being determined according to the procedure de-
scribed in Sec. II. For ethylene, only excitations out of the
1b3u(p) orbital are considered, and the same state-by-state
comparison scheme used for the other molecules is applied
to this p-excitation manifold. The results of these compari-
sons, for the four molecules, are shown in Figs. 1, 2, 3, and
4.

FIG. 1. Correlation plot comparing TD-DFRT results with the multirefer-
ence coupled cluster singles and doubles ~MRCCSD! results of Ref. 53 for
the first 35 vertical excitation energies ~not counting degeneracies! of N2.
Experimental values taken from Ref. 53 are also shown.

FIG. 2. Correlation plot comparing TD-DFRT results with second-order
polarization propagator ~SOPPA! (Sfi1 results from Table II of Ref. 54! for
the first 23 vertical excitation energies ~not counting degeneracies! of CO.
Experimental values taken from Ref. 54 are also shown.
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Also in 1998, Savin, Umrigar & Gonze published a superb set of
results, this time using exact XC potentials. They obtained these
exact, or very accurate XC potentials using a method of inversion:

Calculate a very very accurate density, say using QMC.

From the first Hohenberg–Kohn theorem there is a one-to-one
mapping between this density and the Kohn–Sham potential
for a non-interacting system that produces this density.

Use a convenient method to obtain this potential. Q: How do
you do this for the Helium atom density?

Solve the Kohn–Sham equations using this potential.

The resulting orbitals and orbital energies are the most
accurate you can get.

Here are two sets of tables from their paper in Chem. Phys. Lett.
288, 391 (1998):
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energies that are correct to 14 significant digits for
w xHe. In the case of Be, the density was obtained 8,9

by a combination of variational and diffusion Monte
Carlo techniques, using a wavefunction that recovers
99.2% of the correlation energy in variational Monte
Carlo and 99.9% of the correlation energy in diffu-

w xsion Monte Carlo. Efficient implementations 10,11
of the variational and diffusion Monte Carlo methods
are employed to rapidly sample the many-dimen-
sional space of the wavefunctions.
The true Kohn–Sham potential is then obtained

from the density. For the two-electron systems, it is
obtained directly from the single-particle Kohn–
Sham equation for the sole occupied orbital. For
systems with more electrons, the potential is ex-
panded in a set of functions and the expansion
parameters varied such that the potential yields the

w xtrue density 8,9,12 . All the Kohn–Sham eigenval-
ues can then be obtained by solving the Kohn–Sham
equation.

3. Results

In Tables 1 and 2, we show the excitation ener-
gies of He and Be, respectively, obtained from dif-
ferences of Kohn–Sham eigenvalues and compare
them to the corresponding experimental energies.
Note that a change of the Kohn–Sham potential by a
constant will not affect the calculated excitation en-
ergies, as these are obtained as differences of eigen-

Table 1
Excitation energies of He in hartree atomic units
Transition Final state Experiment Drake DeKS

31s™2s 2 S 0.72833 0.72850 0.7460
12 S 0.75759 0.75775
31s™2p 1 P 0.77039 0.77056 0.7772
11 P 0.77972 0.77988
31s™3s 3 S 0.83486 0.83504 0.8392
13 S 0.84228 0.84245
31s™3p 2 P 0.84547 0.84564 0.8476
12 P 0.84841 0.84858
31s™3d 1 D 0.84792 0.84809 0.8481
11 D 0.84793 0.84809
31s™4s 4 S 0.86704 0.86721 0.8688
14 S 0.86997 0.87014

w xThe theoretical energies of Drake and coworkers 14,15 and
the eigenvalue differences are for infinite nuclear mass and ne-

w xglect relativity. The experimental energies are from Ref. 17 .

Table 2
Excitation energies of Be in hartree atomic units
Transition Final state Experiment DeKS

32s™2p 1 P 0.100153 0.1327
11 P 0.193941
32s™3s 2 S 0.237304 0.2444
12 S 0.249127
32s™3p 2 P 0.267877 0.2694
12 P 0.274233
32s™3d 1 D 0.282744 0.2833
11 D 0.293556
32s™4s 3 S 0.293921 0.2959
13 S 0.297279
32s™4p 3 P 0.300487 0.3046
13 P 0.306314
32s™4d 2 D 0.309577 0.3098
12 D 0.313390
32s™5s 4 S 0.314429 0.3153
14 S 0.315855

The eigenvalue differences are for infinite nuclear mass and
w xneglect relativity. The experimental energies are from Ref. 17 .

values. Of course, the single-electron Kohn–Sham
energies do not distinguish between the energies
within a multiplet. The energies obtained from the
eigenvalue differences, lie between the experimental
singlet and triplet excitation energies with the excep-

Ž .tion of only the 1s ™ 3d 1D excitation for He
Ž q w x.similar results have been obtained for Li . 13 .
The calculated energies are for an infinite mass
nucleus and do not include relativity, whereas the
experimental numbers are, of course, for finite mass
nuclei and are relativistic. In the case of the two-
electron systems it is possible to calculate exceed-
ingly accurate infinite nuclear mass non-relativistic

w xtotal energies 14,15 . The excitation energies ob-
tained from these calculations are also shown for He

Žin Table 1. We observe that now even the 1s ™
.3d 1D excitation energy of He obtained from the

eigenvalue differences agrees with the true calcu-
lated excitation energy to the number of digits shown.
To the best of our knowledge, this remarkable agree-
ment between the Kohn–Sham eigenvalue differ-
ences and the excitation energies has not been no-
ticed before, for any real system, though it has been

w xnoticed for a model semiconductor 16 .
It should be emphasised that the agreement exists

only for accurate Kohn–Sham eigenvalues. Those
obtained from popular approximate density function-

Ž .als, such as the local density approximation LDA
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energies that are correct to 14 significant digits for
w xHe. In the case of Be, the density was obtained 8,9

by a combination of variational and diffusion Monte
Carlo techniques, using a wavefunction that recovers
99.2% of the correlation energy in variational Monte
Carlo and 99.9% of the correlation energy in diffu-

w xsion Monte Carlo. Efficient implementations 10,11
of the variational and diffusion Monte Carlo methods
are employed to rapidly sample the many-dimen-
sional space of the wavefunctions.
The true Kohn–Sham potential is then obtained

from the density. For the two-electron systems, it is
obtained directly from the single-particle Kohn–
Sham equation for the sole occupied orbital. For
systems with more electrons, the potential is ex-
panded in a set of functions and the expansion
parameters varied such that the potential yields the

w xtrue density 8,9,12 . All the Kohn–Sham eigenval-
ues can then be obtained by solving the Kohn–Sham
equation.

3. Results

In Tables 1 and 2, we show the excitation ener-
gies of He and Be, respectively, obtained from dif-
ferences of Kohn–Sham eigenvalues and compare
them to the corresponding experimental energies.
Note that a change of the Kohn–Sham potential by a
constant will not affect the calculated excitation en-
ergies, as these are obtained as differences of eigen-

Table 1
Excitation energies of He in hartree atomic units
Transition Final state Experiment Drake DeKS

31s™2s 2 S 0.72833 0.72850 0.7460
12 S 0.75759 0.75775
31s™2p 1 P 0.77039 0.77056 0.7772
11 P 0.77972 0.77988
31s™3s 3 S 0.83486 0.83504 0.8392
13 S 0.84228 0.84245
31s™3p 2 P 0.84547 0.84564 0.8476
12 P 0.84841 0.84858
31s™3d 1 D 0.84792 0.84809 0.8481
11 D 0.84793 0.84809
31s™4s 4 S 0.86704 0.86721 0.8688
14 S 0.86997 0.87014

w xThe theoretical energies of Drake and coworkers 14,15 and
the eigenvalue differences are for infinite nuclear mass and ne-

w xglect relativity. The experimental energies are from Ref. 17 .

Table 2
Excitation energies of Be in hartree atomic units
Transition Final state Experiment DeKS

32s™2p 1 P 0.100153 0.1327
11 P 0.193941
32s™3s 2 S 0.237304 0.2444
12 S 0.249127
32s™3p 2 P 0.267877 0.2694
12 P 0.274233
32s™3d 1 D 0.282744 0.2833
11 D 0.293556
32s™4s 3 S 0.293921 0.2959
13 S 0.297279
32s™4p 3 P 0.300487 0.3046
13 P 0.306314
32s™4d 2 D 0.309577 0.3098
12 D 0.313390
32s™5s 4 S 0.314429 0.3153
14 S 0.315855

The eigenvalue differences are for infinite nuclear mass and
w xneglect relativity. The experimental energies are from Ref. 17 .

values. Of course, the single-electron Kohn–Sham
energies do not distinguish between the energies
within a multiplet. The energies obtained from the
eigenvalue differences, lie between the experimental
singlet and triplet excitation energies with the excep-

Ž .tion of only the 1s ™ 3d 1D excitation for He
Ž q w x.similar results have been obtained for Li . 13 .
The calculated energies are for an infinite mass
nucleus and do not include relativity, whereas the
experimental numbers are, of course, for finite mass
nuclei and are relativistic. In the case of the two-
electron systems it is possible to calculate exceed-
ingly accurate infinite nuclear mass non-relativistic

w xtotal energies 14,15 . The excitation energies ob-
tained from these calculations are also shown for He

Žin Table 1. We observe that now even the 1s ™
.3d 1D excitation energy of He obtained from the

eigenvalue differences agrees with the true calcu-
lated excitation energy to the number of digits shown.
To the best of our knowledge, this remarkable agree-
ment between the Kohn–Sham eigenvalue differ-
ences and the excitation energies has not been no-
ticed before, for any real system, though it has been

w xnoticed for a model semiconductor 16 .
It should be emphasised that the agreement exists

only for accurate Kohn–Sham eigenvalues. Those
obtained from popular approximate density function-

Ž .als, such as the local density approximation LDA
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Self-Interaction I

Q: What are the problems with using an approximate XC
functional?
Q: What is the origin of the constant shift of energies mentioned
above?
To understand this we will work out how vxc should behave for the
hyrdogen atom.

What is the form of the exact Kohn–Sham potential vS for
large r? (

−1

2
∇2 + vS(r)

)
χk(r) = εkχk(r)

This is equivalent to asking what the potential felt by an
electron will be as we pull it off the atom/molecule. It will see
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Self-Interaction II

a hole and hence experience a −1/r potential. Therefore we
must have

vS → −
1

r

as r →∞.

We know that vS = vJ + vext + vxc. We also know the
long-range (asymptotic) forms of vJ and vext:

vJ(r) =

∫
ρ(r′)

|r− r′|
dr′ → +

1

r

vext(r) = − 1

|r− R|
→ −1

r

Therefore these two cancel out asymptotically.
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Self-Interaction III

Hence we must have

vxc(r)→ −1

r

How do common XC potentials behave at asymptotically?
Best to use the simplest XC functional: the Slater exchange
functional (the VWN correlation part does not change the
picture very much). The Slater functional is

ES
x [ρ] = −Cx

∫
ρ4/3(r)dr
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Self-Interaction IV

This gives us an XC potential:

vxc(r) =
δES

xc[ρ]

δρ

= −4

3
Cxρ

1/3(r)

→ −e−
2
3
r

It has the wrong asymptotic form. It decays too quickly with
distance.

This is what leads to a small band-gap in DFT: the
unoccupied levels are all shifted down with respect to the
occupied orbitals.
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Self-Interaction V

Self-Interaction: Another way of looking at this problem is to
realise that the too rapid decay of vxc with distance is
equivalent to the electron ‘seeing’ itself. I.e., rather than see a

hole with charge +1, it sees a hole with charge +re−
2
3
r . This

is the self-interaction problem. exponentially fast to zero,
eventually the electron will see no attraction.

Any molecular property that depends on the unoccupied levels
will there be effected. Examples are: polarizabilities,
hyperpolarizabilities, excitations, in particular charge-transfer
excitations, NMR shifts.

It is best to see this pictorially. In the next few images we will look
at the XC potential for Helium calculated using the HCTH407
functional compared with a (nearly) exact XC potential (this was
obtained by calculating a very accurate He density and inverting it
to obtain the potential).
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Self-Interaction VI
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Self-Interaction VII
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Asymptotic-correction I

Since we know what the asymptotic form of vxc should be we can
enforce it through an empirical fix known as the asymptotic
correction. We need to account for the shift. Tozer and Handy
worked all this out in 1998:

vxc(r)→ −1

r
+ I + εHOMO

So if know (or calculate) I , calculate εHOMO from a standard DFT
calculation, then we will be able to work out the shift and apply
this correction. This is known as the asymptotic correction.
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Asymptotic-correction II
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Asymptotic-correction III

sets, including supplementation with diffuse functions, the
maximum difference in TDLDA/LB94 excitation energies
among these auxiliary basis sets was 0.11 eV, for the first six
states of formaldehyde. In one test on N2, ~unbalanced!
supplementation of the auxiliary basis set resulted in differ-
ences of a few tenths of an eV, with the TDLDA/LB94 func-
tional. This level of precision of the TDLDA/LB94 results is
adequate for the present work. In contrast, the TDLDA/LDA
results do not appear to be significantly affected by the ad-
dition of diffuse functions to the auxiliary basis sets used
~observed differences being only on the order of a few hun-
dredths of an eV!, presumably because of the shorter range
of the LDA potential.

The deMon ‘‘extrafine’’ ‘‘random’’ grid ~32 radial and
194 angular points per atom! was used throughout. For
CH2O and C2H4, calculations using ‘‘nonrandom’’ grids,
with C2v and D2h symmetry, respectively, were used to con-
firm assignments with the LB94 potential because symmetry
breaking was observed with the ‘‘random’’ grid, in this case,
for some of the higher-lying unoccupied orbitals. ~Differ-
ences between excitation energies with these two grids were
insignificant — typically about 0.01 eV or less.!

The SCF calculations were performed with version 1.2
of the deMon-KS module,42 to which we added the LB94
potential.26 The SCF convergence criteria were a change of
less than 1028 a.u. in the charge density fitting coefficients
and, simultaneously, less than 1028 hartree in the total en-
ergy. We used the LDA energy expression for both the LDA
and the LB94 SCF calculations. In the case of the LB94
potential, this is simply a convenient and harmless choice,
which only affects the meaning of the SCF convergence cri-
terion, since only the density ~or more exactly the orbitals,
orbital energies, and occupations!, but not the total energy,
enters into the TD-DFRT calculations.

IV. RESULTS AND DISCUSSION
Four small, well-studied molecules, namely N2, CO,

CH2O, and C2H4, have been chosen as test molecules in
order to evaluate the quality of the TDLDA/LDA and
TDLDA/LB94 excitation energies. These molecules may
also be considered as prototypes for studying the (n ,p*) and
(p ,p*) transitions important for organic photochemistry.
Comparison is made with published single-particle excitation
energies from high-quality ab initio methods and with ex-
periment. This comparison covers both singlet and triplet
states, over a fairly wide range of energies ~almost up to the
ionization potential.! Theory predicts a number of highly ex-
cited states which either do not appear to have been observed
experimentally or for which accepted experimental excita-
tion energies are not available. For this reason, our primary
comparison is against the ab initio calculations. The choice
of ab initio results against which to compare was governed
by the desire to use, insofar as possible, a single set of results
for each molecule, that would give reasonably accurate val-
ues for all the states considered. The selected calculations are
in good agreement with experiment. The state-by-state com-
parison between the results of different calculations was
made by identifying the nth state of a given symmetry from
one calculation with the nth state of the same symmetry in

the other calculation, with the TD-DFRT N-electron term
symbol being determined according to the procedure de-
scribed in Sec. II. For ethylene, only excitations out of the
1b3u(p) orbital are considered, and the same state-by-state
comparison scheme used for the other molecules is applied
to this p-excitation manifold. The results of these compari-
sons, for the four molecules, are shown in Figs. 1, 2, 3, and
4.

FIG. 1. Correlation plot comparing TD-DFRT results with the multirefer-
ence coupled cluster singles and doubles ~MRCCSD! results of Ref. 53 for
the first 35 vertical excitation energies ~not counting degeneracies! of N2.
Experimental values taken from Ref. 53 are also shown.

FIG. 2. Correlation plot comparing TD-DFRT results with second-order
polarization propagator ~SOPPA! (Sfi1 results from Table II of Ref. 54! for
the first 23 vertical excitation energies ~not counting degeneracies! of CO.
Experimental values taken from Ref. 54 are also shown.
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The LB94
functional is one
route to imposing
an asymptotic
correction. The
effect of this on the
excitation energies
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Asymptotic-correction IV

The asymptotic correction does fix what is called the one-electron
self-interaction error, but self-interaction is a nasty beast and it
takes more than this to correct for it. Besides, there is no clear
way to apply an asymptotic correction in the bulk phase. And the
self-interaction error manifests itself there too. We will see
examples of this in the next lecture.
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Performance I

Assessing XC functionals is a continually evolving field as more
functionals are developed and more kinds of tests are devised. Here
are a few results collated by Koch & Holthausen.
As Physicists we will be mainly interested in band structures
(excitation energies), polarizabilities, densities (i.e., moments),
magnetic properties and binding energies. So I’ve selected
examples of this sort of assessment.
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Performance II

Excitation energies

173

certain robustness of the computed excitation energies with regard to the choice of the basis
set, provided basis sets of at least polarized triple-zeta quality augmented by diffuse func-
tions are used.

A particular class of excitation energies is provided by the relative stability of the low-
est lying singlet and triplet states of carbenes and related species. Even though the energy
difference between these two states can easily be computed by the ∆SCF approach, be-
cause they both represent the lowest states in their respective multiplicity, the computation
of reliable excitation energies for such species is a long standing problem in quantum
chemistry (for general overviews see Bettinger et al., 1997 and 1998). Let us take methyl-
ene as the simplest example to illustrate the peculiarities and concomitant problems for the
theoretical treatment of this group of molecules. A carbene is characterized by two elec-
trons not engaged in bonding, and two non-bonding orbitals to accommodate them, i. e.,
the π-type (b1 in case of the C2v symmetric CH2) and the lower lying σ-type orbital (a1 for
CH2). In the singlet 1A1 state, the two electrons are spin paired while in the 3B1 triplet the
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Figure 9-2. Performance of various functionals in the framework of time-dependent DFT for excitation energies
of ethylene.

9.6  Electronic Excitation Energies and the Singlet/Triplet Splitting in Carbenes
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Performance III

Polarizabilities

187

Table 10-3. Compilation of mean absolute deviations for static average polarizabilities [a.u.] of small main group
molecules from different sources.

13 molecules, POL basis set, McDowell, Amos and Handy, 1995

HF 1.18 BD(T) 0.36
MP2 0.36 LDA 0.99
MP4 0.40 BLYP 0.95

19 molecules, augmented TZP STO basis set, van Gisbergen et al., 1996

LDA 0.92 LB94 0.63a

BP86 0.43

8 molecules, numerical, basis set free, Dickson and Becke, 1996

LDA 0.60

16 molecules, POL basis set, Van Caillie and Amos, 1998

HF 1.06 B3LYP 0.38
LDA 0.99

16 molecules, d-aug-cc-pVTZ basis set, Van Caillie and Amos, 1998

HF 1.07 B3LYP 0.39
LDA 0.98

14 molecules, POL basis set,Tozer and Handy, 1998

LDA 0.83 HCTH 0.36
BLYP 0.90 HCTH(AC) 0.26
B3LYP 0.33 MP2 0.24

5 molecules,TZVP+FIP basis set, Calaminici, Jug and Köster, 1998

HF 1.29 BLYP 0.41
LDA 0.33 CCSD(T) 0.31

12 molecules, POL basis set, Adamo et al., 1999

MP2 0.25 B97 0.42
MP4 0.28 B3LYP 0.39
BD(T) 0.23 HCTH 0.29
PBE1PBE 0.20

20 molecules, POL basis set, Cohen and Tozer, 1999

HF 1.76 HCTH 1.38
MP2 0.95 B3LYP 1.79
BD 1.29 B97 1.50
BLYP 2.25 B97-1 1.53

a Note that the signed average error is considerably smaller. The LB94 potential shows no systematic errors.

10.3  Polarizabilities
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