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Density-Functional Theory |

Hohenberg & Kohn (Phys. Rev. B, 136, 864 (1964)):

Theorem

H-K Theorem 1 There is a one-to-one mapping between the
electronic density and the external potential, and hence, the
Hamiltonian:

p(r) < H

Proof is by reductio ad absurdum.
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Density-Functional Theory Il

Consider the Hamiltonian with the electron—nuclear potential vyt
(this is sometimes called the external potential):

N
_ _7Zv2+z +Zvext(ri) (1)

i<j

o Let v, and v2, arise from the same density.

@ We therefore have two Hamiltonians H; and Hy with the
same ground state density but with different ground state
wavefunctions, V1 and V5.



DFT HF-revisited KS-DFT Functionals Interpretation Performance
Density-Functional Theory Il

@ Consider H1: The variational principle states that

EY < (Wy|H1|W3) = (Wo|Ha|Wa) 4 (Wa|Hy — Ha|Wo)
= B + (Wa|vey — Vo |V2)

ext

= E9+ [ plo) [vha(e) — A (e)] d

o Similarly E9 < EQ + [ p(r) [V (r) — vie(r)] dr
@ Adding the inequalities:

EP+E)<E)+E) —«

@ Hence p(r) <— H
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Density-Functional Theory IV

E. Bright Wilson's observation: To know the Hamiltonian we need
to know the number of electrons and position and charge of the
nuclei. These can be obtained from the density:

o N = [p(r)dr
@ Position and charge of nuclei can be obtained from the cusps:

o] = —2Z(p(0))
r=0

So p completely determines the Hamiltonian and therefore the
ground-state energy (and also all excited state energies!).
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Density-Functional Theory V

What the Hohenberg—Kohn theorem allows us to do is (formally)
write the energy as a functional of the density.

E = E[p] = Tlp] + Veelp] + Venlr]
= Flol+ [ p0)vese ()

This leads to the second Hohenberg—Kohn theorem:

Theorem
H-K Theorem 2 If  is an approximate density then

Elp] < E[7]
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Density-Functional Theory VI

It's easy to see how this theorem arises:

@ [ gives rise to a unique potential vgyt, and hence a
Hamiltonian #H and therefore to a ground state wavefunction
v

@ Using the variational principle
E° = Elp] < (DIHI9) = FI7] + [ (v (1) = B[]

So in principle we can search over all N-electron densities to find
the one that leads to the lowest energy.
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Density-Functional Theory VII

In practice searching over all N-electron densities is next to
impossible. How do we do this? If we are given a trial N-electron
density p, how can we obtain the corresponding external potential
vext? This can be done for a one or two electron system (Ex.
How?) but not in general.

All this would have been a curiosity had it not been for a paper by
Kohn & Sham published in 1965 (Phys. Rev. A 140, 1133) which
gave us what we now know as Kohn-Sham DFT.
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Hartree—Fock again |

Before getting on with DFT, let's have another look at
Hartree—Fock, but this time, from a slightly different angle.
The HF energy can be written as

Egrp = min  (Vgp| T + \A/ne + \A/ee’WSD>

|\|JSD>~)N
= min  (Wep|T + Vext + Veo|Wsp)
|WSD>~)N

Here |Wgp) is our Slater determinant that yields an N electron
density. In the second line | have used our notation for the
electron—nuclear potential: the external potential.

Performance
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Hartree—Fock again Il

This minimization procedure gives rise to an effective Hamiltonian
— the Fock operator:

. 1 Za :
(i) = =3 V2= 30 22 4 V() @

The HF potential is an effective potential that contains the
effective electron—electron Coulomb and exchange interactions (no
correlation!). To get us ready for Kohn—-Sham theory, we will make
a few changes to the above equation.
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Hartree—Fock again Ill

@ First of all recognise that the second term in the Fock
operator is just the external potential: Vey

@ Next, split the HF operator into its Coulomb and Exchange
parts. These are usually labeled by ‘J" and ‘X', respectively:

VHF:VJ-i-VX

So our Fock operator is now written as

FIF() = - L

= 5V Vet (1) + va (i) + vx(7) (3)
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Hartree—Fock again IV

In some sense we can say that the HF ground state energy is a
functional of the density and can be written as

Enrlp™] = Tslp" I+I 0 I+ ET [0 ]+ / P (1) Vexe (r)dr (4)

where the non-interacting Kinetic energy functional is

N

TSl = 2 0l VA (5)
i=1

which is not strictly a functional of the density, but since the
density is implicitly a functional of the orbitals we can still think of
the KE functional as a density functional.
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Hartree—Fock again V

The Coulomb energy functional is defined as

1 HF HF
J[pHF] = 5 // —p (rl)lz (r2)d1"1d1‘2

r-

The exchange energy functional is non-local and is, like the KE

functional, dependent on the HF orbitals:

EFY == Y S [ dadam 2P,

r
acocc bcoce 12

where Py2 is the permutation operator.

Performance

(6)

a(1)

(7)



DFT HF-revisited KS-DFT Functionals Interpretation Performance

Hartree—Fock again VI

Looked at in this way HF theory is a kind of density functional
theory, but one that is not, even in principle, exact (except for
1-electron systems).
In this formulation of HF theory, we define the HF energy as
EUF = min  Eur[p]

p~>|\USD>,N
That is, we minimize the functional Epp[p| over all N-electron
densities that arise from a Slater determinant. We need to impose
the N-electron constraint and this is done using Lagrange
multipliers. We minimize the functional:

N
Qo] = Enrlp] — > ej({xilx;) — 6)

i
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Hartree—Fock again VII

Since Q[p] really is a functional of the orbitals, we need to perform
the variation over the orbitals and use the chain rule:

58 oplr)
S0 59 bxir) (8)

| do not want to get is bogged down with functional derivatives,
but one example of how its done could be illuminating:

First of all, since p(r) = Zil X5 (r)xi(r) we get

op(r) _
ox;(r)

xi(r)
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Hartree—Fock again VIII

Now consider the functional derivative of J[p]:

6Jlp] _ 6J[p] 5p()
ox;(r) 5p( ) ox;(x

[// i e i)

- - r/| dr’Xi(r)

| T

= vy(r)xi(r)

Do this for all terms and we get back our Fock equation (in a

generalised form).

Performance
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Kohn—-Sham DFT |

In 1965 Walter Kohn & Lu Sham put DFT on a practical footing
through what is now known as Kohn—-Sham DFT. The begain by
postulating the existence of a non-interacting system with external
potential vg that yields the exact density. That is

H = Z <—;v? + vs(i)>

has a ground state single determinant solution with density p.
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Kohn—-Sham DFT Il

We know how to write the kinetic energy of this system:

N .
Tslp] = Z _§<Xi’v Ixi)

Now write the Hohenberg—Kohn functional as

Flpl = Tlp] + Veelp]
= Tslp] + J[p] + Exclp]

where this eXchange-Correlation functional is defined as

Exelpl = (Tlpl = Tslpl) = (Veelo] = Jlp])

Performance
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Kohn—-Sham DFT Il

In analogy with the Hartree—Fock functional, we find the ground
state energy by minimizing the Kohn—Sham energy functional
defined as:

L) = Tsl) + ol + Bl + [ veallo)tr (9
subject to the orthonormality constraints

{xilxj) = 0j-
As before, we include these constraints using Lagrange multipliers
and minimize

N

Qlpl = Elp] = > _ e5((xilxg) — 63)

i7j
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Kohn—-Sham DFT IV

This gives us the Kohn—Sham equations (no proof, but it is a
reasonably straightforward exercise in functional differentiation):

1
<2V,2 + Vs(l")> Xi = €iXi
where the effective potential is defined as

vs(r) = vi(r) + Vext(r) + vie(r)

The various potentials that enter this expression are:

@ vj: The Coulomb potential defined as:

vi(r) = / p(lf’)/| 4

v —r
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Kohn—-Sham DFT V

@ Vext: Ihe external potential, i.e., the electron-nuclear
potential:

Zg,
==Y iy

@ Vy.: The exchange-correlation potential which is defined
through the exchange-correlation energy Ey.[p] as:

_ 0Ex[p]
Vie(T) = T

Performance
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Kohn-Sham DFT VI

@ In a sense, what Kohn & Sham did was to sweep all the
unknowns under the rug. But they did this intelligently as they
had a good idea of how to approximate the unknown bits: the
exchange-correlation energy and its functional derivative.

@ Also, they knew that their formalism was in principle exact as
they had proved various theorems to that effect.

@ It turned out that their proofs were not mathematically sound,
but this was fixed by others.

@ The rest of the DFT story is how we find the
exchange-correlation functional Eg.[p].
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Density Functionals |

Exchange correlation functionals are usually written in the form

Euclpl = [ pla)esc (o). Volo), -+ ) (10)

where €,..(p(r), Vp(r),---) can be regarded as the
exchange-correlation density.

We usually split the exchange-correlation density into its exchange
and correlation parts:

exc(p(r), Vp(r), - --) = e(p(r), Vp(r), - - ) + €.(p(r), Vp(r), - - )
(11)
This separation is convenient for we can then think of using
well-understood approximations for each of these.
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LDA |

The first of the many functionals is the local density approximation
or LDA. In this approximation the exchange-correlation density
depends on the electron density alone (no dependence on gradients
etc.):

Evelf] = / pX)EEDA (1)) dr (12)

The Slater approximation is used for the exchange-energy density:

S(p(r)) = _% <3p(r)>3/2

™

Using this we get the Slater exchange functional:

e--2(2)" [rew= o [ e
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LDA I

Paired with this is a correlation functional parameterized on very
accurate quantum Monte-Carlo (QMC) calculations of the energy
of the homogeneous free electron gas as a function of density.
There are a variety of correlation parameterizations. These differ
by the choice of QMC energies used or by the interpolation scheme
used in the parameterization (the QMC energies are calculated at a
set of densities so some scheme is required to interpolate to all
densities).
Common choices of the correlation functional are:

e PWO91lc The Perdew—Wang (1992) parameterization (called

pw91lda in NWCHEM.

@ VWN The Voski-Wilk—Nusair (1980) parameterization.

So what is called the LDA translates into a combination of the
Slater exchange functional and one of these correlation functionals.
The actual choice will vary with program.
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LDA Il

from inhomogeneous
system

e (P(1)) |
— s“(p(rv )

from homogeneous
electron gas LDA

EXMp] = [p(F) e (p(F)) dF

Figure 6-2. The local density approximation.

From Koch & Holthausen A Chemist’s Guide to density Functional Theory

(2001).

Performance
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LDA IV

Generalization to open-shell systems (local spin-density
approximation (LSD)): the exchange-correlation density depends
on the spin-up and spin-down densities:

Eclpospal = [ )LD (0). )l (13)

@ GOOD LDA is better than HF. Good equilibrium geometries,
harmonic frequencies.

@ BAD Energetics very poor. Errors in atomization energies 36
kcal/mol. (HF has errors of 78 kcal/mol on same set of
molecules)
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GGA |

In the generalized gradient approximations the exchange-correlation
density is dependent on the density and its gradient.

Exclp] = [ 0S5 60). V(o))

As before, we split the exchange-correlation density into its
exchange and correlation parts:

et (p(r), Vp(r)) = €29 p(r), Vp(r)) + €S (p(r), V(r))

The exchange part of all GGAs takes the form

é“mz/mﬁMan@m
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GGA I

Fx(s) is sometimes called the enhancement factor and is written
as a function of the reduced density gradient defined as

o) — 1900
2(37(2)1/3p4/3(r) ’

Note that in general all quantities will depend on spin.

This definition is used so as to make s dimensionless (Q: Show
this!) and means that s will be large when the gradient of the
density is large (where the LDA should fail) and also where the
density is small (in the region of the density tails).

Two of the common exchange enhancement factors are
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GGA I

@ Becke, 1988 (B88)

fs?

1+63ssinh™1s

FB%8(s) =1—

Becke fitted the parameter 5 = 0.0042 to reproduce known
exchange energies of rare gas atoms. This particular form for
the enhancement factor was chosen to obey a few exact
relations.

@ Perdew, Burke & Ernzerhof, 1996 (PBE)

FPBE(s) =14k — -
X (S) +'L 1*#52/h

In this functional all parameters were obtained theoretically.
r = 0.804. Most physcists use this exchange functional.
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Hybrid Functionals |

The exchange contribution to the energy is much larger than the
correlation energy (which is why HF is not too bad!). So why not
use the best exchange energy we have — from HF, usually termed
exact exchange in this context — and combine it with the best
correlation funtional available:

Exelp] = EX o] + Eclp]

This turns out to be better than HF, but much worse than the
GGAs.

The precise reason for this somewhat poor behaviour has to do with the nature
of the exchange hole. The exact x-hole is local, but the HF x-hole is non-local.
So it must be corrected by a non-local correlation hole, but the DFT
correlation hole is also local and so cannot correct the HF x-hole. This is all

very interesting but also very technical.
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In 1993, Becke proposed a three-parameter semi-empirical
functional that cured this problem. The general idea is to mix
some fraction of HF exchange with DFT exchange:

Ehybrid — ggHF 4 (1 - 2)EGOA 4+ EGCA

The B3LYP is the most widely used of these and is a slight
modification of Becke's 1993 proposal made the following year by
Stephens and others:

ESSIYY = ESVWN 4 ag(EFY — ED) + ax(EP® — EY) + ac(EXYY — EYY

A better choice (in my opinion) is the PBEO functional (sometimes
called PBE1PBE) which mixes PBE with 20% HF exchange.
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Jacob’s Ladder |

John Perdew has summarised the state of DFT using the Biblical
picture of Jacob’s Ladder: At the base we have the LDA and at
the top, in the heaven of chemical accuracy (interesting concept -
what is Physical Accuracy?) we have some unknown functional.
Here's the whole Ladder...
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Jacob's Ladder Il

CHEMICAL HEAVEN

@ corr-hyper-GGA: Modifies the hyper-GGAs by including
correlation through range-separation. This is currently done at
the RPA level.

@ hyper-GGA: Adds exact exchange using range-separation.
Leads to functionals that can fix (part of) the charge-transfer
problem of most DFT functionals. CamB3LYP

@ meta-GGA: p,Vp,V?p, 7, here 7 =33 |Vxal|® is the
Kohn—Sham orbital kinetic energy density. TPSS

© GGA: p,Vp. PBE
@ LDA,LSD: p
INACCURATE HELL
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Meaning of the KS orbital energies |

@ The Kohn-Sham non-interacting system was initially regarded
as no more than a device to facilitate the solution of the
Schrodinger equation.

@ The orbitals and orbital eigenvalues were not taken to mean
anything with one exception:

@ eggomo = —/: Perdew, Parr, Levy and Balduz (Phys. Rev.
Lett. 49. 1691 (1982)) had shown that the energy of the
highest occupied molecular orbital was exactly equal to the
negative of the vertical lonization energy.

@ However, there was a lot of empirical evidence that the
Kohn—Sham orbital energies were closely related to the
experimental ionization energies.

@ But they were generally shifted w.r.t. the experimental values.
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Meaning of the KS orbital energies ||

@ In 2001, Chong, Gritsenko and Baerends (J. Chem. Phys.
116, 1760) showed that for the exact XC potential (they used
a method called SAOP that had many of the properties of the
exact XC potential):
/k ~ —€k

With the relation being exact for the HOMO.

@ In practice this means that we can use the KS orbital energies
as a good approximation to the experimental excitation levels
of our system, but with a constant, and possibly large, shift.

@ Q: Why are the orbital energies shifted?

First, some evidence for the statements made above.
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Meaning of the KS orbital energies IlI

Casida, Jamorski,
Casida & Salahub,
N2 EXCITATION ENERGIES (eV)
17 T J. Chem. Phys.
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b e : 108, 4439 (1998).
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FIG. 1. Correlation plot comparing TD-DFRT results with the multirefer-
ence coupled cluster singles and doubles (MRCCSD) results of Ref. 53 for
the first 35 vertical excitation energies (not counting degeneracies) of N,.
Experimental values taken from Ref. 53 are also shown.
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Meaning of the KS orbital energies |V

Casida, Jamorski,
CO EXCITATION ENERGIES (eV) CaSida & SalahUb'

15 T T T T T T T T T J Chem Phys
14r o EXPT <& E 108, 4439 (1998)
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FIG. 2. Correlation plot comparing TD-DFRT results with second-order
polarization propagator (SOPPA) (S# 1 results from Table 1I of Ref. 54) for
the first 23 vertical excitation energies (not counting degeneracies) of CO.
Experimental values taken from Ref. 54 are also shown.



DFT HF-revisited KS-DFT Functionals Interpretation Performance

Meaning of the KS orbital energies V

Also in 1998, Savin, Umrigar & Gonze published a superb set of
results, this time using exact XC potentials. They obtained these
exact, or very accurate XC potentials using a method of inversion:

o Calculate a very very accurate density, say using QMC.

@ From the first Hohenberg—Kohn theorem there is a one-to-one
mapping between this density and the Kohn—Sham potential
for a non-interacting system that produces this density.

@ Use a convenient method to obtain this potential. Q: How do
you do this for the Helium atom density?

@ Solve the Kohn—-Sham equations using this potential.

@ The resulting orbitals and orbital energies are the most
accurate you can get.

Here are two sets of tables from their paper in Chem. Phys. Lett.
288, 391 (1998):
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Meaning of the KS orbital energies VI

Table 1

Excitation energies of He in hartree atomic units

Transition  Final state  Experiment = Drake Aegg

Is > 2s 2°s 0.72833 0.72850  0.7460
2's 0.75759 0.75775

Is—>2p 1°p 0.77039 0.77056  0.7772
1'p 0.77972 0.77988

1s = 3s 3%s 0.83486 0.83504  0.8392
3's 0.84228 0.84245

1s = 3p 2°p 0.84547 0.84564  0.8476
2'p 0.84841 0.84858

1s —> 3d 1°D 0.84792 0.84809  0.8481
1'D 0.84793 0.84809

Is—4s  4°S 0.86704 0.86721  0.8688
4's 0.86997 0.87014

The theoretical energies of Drake and coworkers [14,15] and
the eigenvalue differences are for infinite nuclear mass and ne-
glect relativity. The experimental energies are from Ref. [17].
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Meaning of the KS orbital energies VII

Table 2

Excitation energies of Be in hartree atomic units

Transition Final state Experiment Aegg

25 - 2p 1°p 0.100153 0.1327
1'p 0.193941

25 > 3s 2°s 0.237304 0.2444
2's 0.249127

25 = 3p 2°p 0.267877 0.2694
2'p 0.274233

2s — 3d 1°D 0.282744 0.2833
1'D 0.293556

25 — 4s 3’s 0.293921 0.2959
3's 0.297279

25 — 4p 3°p 0.300487 0.3046
3'p 0306314

2s — 4d 2°D 0.309577 0.3098
2'D 0313390

25 — 55 4%s 0314429 03153
4's 0.315855

The eigenvalue differences are for infinite nuclear mass and
neglect relativity. The experimental energies are from Ref..[17].
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Q: What are the problems with using an approximate XC
functional?
Q: What is the origin of the constant shift of energies mentioned

above?
To understand this we will work out how vy should behave for the

hyrdogen atom.
@ What is the form of the exact Kohn—Sham potential vg for
large r?

<—;v2 + VS(r)> Xk(r) = exxk(r)

This is equivalent to asking what the potential felt by an
electron will be as we pull it off the atom/molecule. It will see
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Self-Interaction |l

a hole and hence experience a —1/r potential. Therefore we
must have

Vg — ——
r

as r — OQ.

@ We know that vg = vj 4 Vext + V. We also know the
long-range (asymptotic) forms of vy and Vext:

p(r) 1
vy(r) = / = 1r,|d]r’ -+
L1
Ir — R r

Vext () = —

Therefore these two cancel out asymptotically.
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Self-Interaction Il

@ Hence we must have

1
Vie(1) = — .

@ How do common XC potentials behave at asymptotically?
Best to use the simplest XC functional: the Slater exchange
functional (the VWN correlation part does not change the
picture very much). The Slater functional is

ES[] = — G / o3(x)dr
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Self-Interaction IV

This gives us an XC potential:
ES
VXC(I‘) — 5 XC[p]
op
= 2 C'P0)
e

Performance

It has the wrong asymptotic form. It decays too quickly with

distance.
@ This is what leads to a small band-gap in DFT: the

unoccupied levels are all shifted down with respect to the

occupied orbitals.



DFT HF-revisited KS-DFT Functionals Interpretation Performance

Self-Interaction V

@ Self-Interaction: Another way of looking at this problem is to
realise that the too rapid decay of vy with distance is
equivalent to the electron ‘seeing’ itself. l.e., rather than see a
hole with charge +1, it sees a hole with charge +re~3". This
is the self-interaction problem. exponentially fast to zero,
eventually the electron will see no attraction.

@ Any molecular property that depends on the unoccupied levels
will there be effected. Examples are: polarizabilities,
hyperpolarizabilities, excitations, in particular charge-transfer
excitations, NMR shifts.

It is best to see this pictorially. In the next few images we will look
at the XC potential for Helium calculated using the HCTH407
functional compared with a (nearly) exact XC potential (this was
obtained by calculating a very accurate He density and inverting it
to obtain the potential).
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Self-Interaction VI

He: eXchange-Correlation potential

0.5 T T T T T T T T

Performance
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Self-Interaction VII

He: eXchange-Correlation potential

0.5 T T T T T T T T T

— — Exact, shifted
—— Exact
—— HCTH407

Performance
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Asymptotic-correction |

Since we know what the asymptotic form of vy should be we can
enforce it through an empirical fix known as the asymptotic
correction. We need to account for the shift. Tozer and Handy
worked all this out in 1998:

1
VXC(I“) — —; + I+ egomo
So if know (or calculate) /, calculate egonmo from a standard DFT

calculation, then we will be able to work out the shift and apply
this correction. This is known as the asymptotic correction.
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He: eXchange-Correlation potential

— — Exact, shifted
—— Exact

—— HCTH407
—— HCTH407/THFA |

Performance
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FIG. 2. Correlation plot comparing TD-DFRT results with second-order
polarization propagator (SOPPA) (S# 1 results from Table 1I of Ref. 54) for
the first 23 vertical excitation energies (not counting degeneracies) of CO.
Experimental values taken from Ref. 54 are also shown.

Interpretation Performance

The LB9%4
functional is one
route to imposing
an asymptotic
correction. The
effect of this on the
excitation energies
is quite dramatic.
Casida, Jamorski,
Casida & Salahub,
J. Chem. Phys.
108, 4439 (1998).
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Asymptotic-correction IV

The asymptotic correction does fix what is called the one-electron
self-interaction error, but self-interaction is a nasty beast and it
takes more than this to correct for it. Besides, there is no clear
way to apply an asymptotic correction in the bulk phase. And the
self-interaction error manifests itself there too. We will see
examples of this in the next lecture.
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Performance |

Assessing XC functionals is a continually evolving field as more
functionals are developed and more kinds of tests are devised. Here
are a few results collated by Koch & Holthausen.

As Physicists we will be mainly interested in band structures
(excitation energies), polarizabilities, densities (i.e., moments),
magnetic properties and binding energies. So I've selected
examples of this sort of assessment.
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Performance I

Excitation energies

CASPT2
PBEIPBE

Deviation [eV]

Figure 9-2. Performance of various functionals in the framework of time-dependent DFT for excitation energies
of ethylene.
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Performance llI

Polarizabilities

5 molecules, TZVP+FIP basis set, Calaminici, Jug and Koster, 1998

HF 1.29 BLYP 0.41
LDA 0.33 CCSD(T) 0.31

12 molecules, POL basis set, Adamo et al., 1999

MP2 0.25 B97 0.42
MP4 0.28 B3LYP 0.39
BD(T) 0.23 HCTH 0.29
PBEIPBE 0.20

20 molecules, POL basis set, Cohen and Tozer, 1999

HF 1.76 HCTH
MP2 0.95 B3LYP
BD 1.29 B97

BLYP 225 B97-1
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