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Post-HF methods I

We have looked at three kinds of post-Hartree–Fock methods:

Configuration Interaction (CI): Variational. Full CI is exact
but scales exponentially. Truncated CI (e.g. CISD) not
size-consistent.

Coupled-cluster (CC): Also potentially exact. Truncated
methods are size-consistent. CCSD(T) is the method of
choice if you can afford the O(N7) computational cost.

Møller–Plesset Perturbation Theory (MPn): Perturbation
theory starting from HF reference state. Usually only used at
second-order: MP2. Known to diverge. MP2 is the first term
to include correlation (MP0 and MP1 are parts of the HF
energy).
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Post-HF methods II

Practical considerations: CI, CC and MP2 are expensive!

Method Cost Description

HF N4 Starting point for correlated methods.
MP2 N5 OK. Useful for optimizations.
CISD N6 Not size-consistent.
CCSD(T) N7 Very accurate.

All correlated methods require large basis sets with high angular
functions.
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The electron–electron cusp I

Correlation is the description of this kink.
All figures from “Molecular Electronic Structure Theory” by Helgaker,

Jorgensen and Olsen
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The electron–electron cusp II

Principle and partial wave expansions.
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The electron–electron cusp III

He2: Principle wave expansion with one electron fixed at 0.5Å:
n = 2
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The electron–electron cusp IV

He2: Principle wave expansion with one electron fixed at 0.5Å:
n = 3
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The electron–electron cusp V

He2: Principle wave expansion with one electron fixed at 0.5Å:
n = 4



Summary: Correlation Correlation cusp DFT HF-revisited KS-DFT

The electron–electron cusp VI

He2: Principle wave expansion with one electron fixed at 0.5Å:
n = 5

These cusps make correlation hard. Not only do the methods scale
poorly with size, but we need rather large basis sets to get sensible
results.
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Density-Functional Theory I

Hohenberg & Kohn (Phys. Rev. B, 136, 864 (1964)):

Theorem

H–K Theorem 1 There is a one-to-one mapping between the
electronic density and the external potential, and hence, the
Hamiltonian:

ρ(r) ⇐⇒ H

Proof is by reductio ad absurdum.
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Density-Functional Theory II

Consider the Hamiltonian with the electron–nuclear potential vext
(this is sometimes called the external potential):

H = −1

2

N∑
i

∇2
i +

∑
i<j

1

rij
+

N∑
i

vext(ri) (1)

Let v 1
ext and v 2

ext arise from the same density.

We therefore have two Hamiltonians H1 and H2 with the
same ground state density but with different ground state
wavefunctions, Ψ1 and Ψ2.



Summary: Correlation Correlation cusp DFT HF-revisited KS-DFT

Density-Functional Theory III

Consider H1: The variational principle states that

E 0
1 < 〈Ψ2|H1|Ψ2〉 = 〈Ψ2|H2|Ψ2〉+ 〈Ψ2|H1 −H2|Ψ2〉

= E 0
2 + 〈Ψ2|v 1

ext − v 2
ext|Ψ2〉

= E 0
2 +

∫
ρ(r)

[
v 1
ext(r)− v2ext(r)

]
dr

Similarly E 0
2 < E 0

1 +
∫
ρ(r)

[
v 2
ext(r)− v1ext(r)

]
dr

Adding the inequalities:

E 0
1 + E 0

2 < E 0
2 + E 0

1 →←

Hence ρ(r) ⇐⇒ H
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Density-Functional Theory IV

E. Bright Wilson’s observation: To know the Hamiltonian we need
to know the number of electrons and position and charge of the
nuclei. These can be obtained from the density:

N =
∫
ρ(r)dr

Position and charge of nuclei can be obtained from the cusps:

∂

∂r
〈ρ(r)〉sph

∣∣∣∣
r=0

= −2Z 〈ρ(0)〉sph

So ρ completely determines the Hamiltonian and therefore the
ground-state energy (and also all excited state energies!).
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Density-Functional Theory V

What the Hohenberg–Kohn theorem allows us to do is (formally)
write the energy as a functional of the density.

E = E [ρ] = T [ρ] + Vee[ρ] + Ven[ρ]

= F [ρ] +

∫
ρ(r)vext(r)dr

This leads to the second Hohenberg–Kohn theorem:

Theorem

H–K Theorem 2 If ρ̃ is an approximate density then

E [ρ] ≤ E [ρ̃]
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Density-Functional Theory VI

It’s easy to see how this theorem arises:

ρ̃ gives rise to a unique potential ˜vext, and hence a
Hamiltonian H̃ and therefore to a ground state wavefunction
Ψ̃.

Using the variational principle

E 0 = E [ρ] ≤ 〈Ψ̃|H|Ψ̃〉 = F [ρ̃] +

∫
ρ̃(r)vext(r)dr = E[ρ̃]

So in principle we can search over all N-electron densities to find
the one that leads to the lowest energy.
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Density-Functional Theory VII

In practice searching over all N-electron densities is next to
impossible. How do we do this? If we are given a trial N-electron
density ρ̃, how can we obtain the corresponding external potential

˜vext? This can be done for a one or two electron system (Ex.
How?) but not in general.
All this would have been a curiosity had it not been for a paper by
Kohn & Sham published in 1965 (Phys. Rev. A 140, 1133) which
gave us what we now know as Kohn–Sham DFT.
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Hartree–Fock again I

Before getting on with DFT, let’s have another look at
Hartree–Fock, but this time, from a slightly different angle.
The HF energy can be written as

EHF = min
|ΨSD〉→N

〈ΨSD|T̂ + V̂ne + V̂ee|ΨSD〉

= min
|ΨSD〉→N

〈ΨSD|T̂ + vext + V̂ee|ΨSD〉

Here |ΨSD〉 is our Slater determinant that yields an N electron
density. In the second line I have used our notation for the
electron–nuclear potential: the external potential.
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Hartree–Fock again II

This minimization procedure gives rise to an effective Hamiltonian
— the Fock operator:

f HF(i) = −1

2
∇2

i −
∑
α

Zα
riα

+ vHF(i) (2)

The HF potential is an effective potential that contains the
effective electron–electron Coulomb and exchange interactions (no
correlation!). To get us ready for Kohn–Sham theory, we will make
a few changes to the above equation.
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Hartree–Fock again III

First of all recognise that the second term in the Fock
operator is just the external potential: vext

Next, split the HF operator into its Coulomb and Exchange
parts. These are usually labeled by ‘J’ and ‘X’, respectively:

vHF = vJ + vX

So our Fock operator is now written as

f HF(i) = −1

2
∇2

i + vext(i) + vJ(i) + vX(i) (3)
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Hartree–Fock again IV

In some sense we can say that the HF ground state energy is a
functional of the density and can be written as

EHF[ρHF] = TS[ρHF]+J[ρHF]+EHF
x [ρHF]+

∫
ρHF(r)vext(r)dr (4)

where the non-interacting Kinetic energy functional is

TS[ρHF] = −1

2

N∑
i=1

〈χi |∇2
i |χi 〉 (5)

which is not strictly a functional of the density, but since the
density is implicitly a functional of the orbitals we can still think of
the KE functional as a density functional.
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Hartree–Fock again V

The Coulomb energy functional is defined as

J[ρHF] =
1

2

∫∫
ρHF(r1)ρHF(r2)

r12
dr1dr2 (6)

The exchange energy functional is non-local and is, like the KE
functional, dependent on the HF orbitals:

EHF
x [ρHF] = −

∑
a∈occ

∑
b∈occ

∫∫
dx1dx2χ

∗
a(1)

χ∗b(2)P12χb(2)

r12
χa(1)

(7)
where P12 is the permutation operator.
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Hartree–Fock again VI

Looked at in this way HF theory is a kind of density functional
theory, but one that is not, even in principle, exact (except for
1-electron systems).
In this formulation of HF theory, we define the HF energy as

EHF = min
ρ→|ΨSD〉,N

EHF[ρ]

That is, we minimize the functional EHF[ρ] over all N-electron
densities that arise from a Slater determinant. We need to impose
the N-electron constraint and this is done using Lagrange
multipliers. We minimize the functional:

Ω[ρ] = EHF[ρ]−
N∑
i ,j

εij(〈χi |χj〉 − δij)
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Hartree–Fock again VII

Since Ω[ρ] really is a functional of the orbitals, we need to perform
the variation over the orbitals and use the chain rule:

δ

δχi (r)
=

δ

δρ(r)

δρ(r)

δχi (r)
(8)

I do not want to get is bogged down with functional derivatives,
but one example of how its done could be illuminating:
First of all, since ρ(r) =

∑N
i=1 χ

∗
i (r)χi(r) we get

δρ(r)

δχ∗i (r)
= χi (r)
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Hartree–Fock again VIII

Now consider the functional derivative of J[ρ]:

δJ[ρ]

δχ∗i (r)
=
δJ[ρ]

δρ(r)

δρ(r)

δχ∗i (r)

=
δ

δρ(r)

[
1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
drdr′

]
× χi (r)

=

∫
ρ(r′)

|r− r′|
dr′χi(r)

= vJ(r)χi (r)

Do this for all terms and we get back our Fock equation (in a
generalised form).
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Kohn–Sham DFT I

Now we are in a position to appreciate Kohn–Sham DFT. They
began by postulating the existence of a non-interacting system
with external potential vS that yields the exact density. That is

H =
∑
i

(
−1

2
∇2

i + vS(i)

)
has a ground state single determinant solution with density ρ.
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Kohn–Sham DFT II

We know how to write the kinetic energy of this system:

TS[ρ] =
N∑
i

−1

2
〈χi |∇2|χi 〉

Now write the Hohenberg–Kohn functional as

F [ρ] = T [ρ] + Vee[ρ]

= TS[ρ] + J[ρ] + Exc[ρ]

where this eXchange-Correlation functional is defined as

Exc[ρ] = (T [ρ]− TS[ρ])− (Vee[ρ]− J[ρ])
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Kohn–Sham DFT III

To find out what goes into this mysterious effective potential vS
we write down the Kohn–Sham energy functional:

E [ρ] = TS[ρ] + J[ρ] + Exc[ρ] +

∫
vext(r)ρ(r)dr (9)

As with our Hartree–Fock functional, this needs to be minimized
subject to the constraints

〈χi |χj〉 = δij .

As before, we include these constraints using Lagrange multipliers
and minimize

Ω[ρ] = E [ρ]−
N∑
i ,j

εij(〈χi |χj〉 − δij)
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Kohn–Sham DFT IV

which after a little manipulation gives us the Kohn–Sham
equations (

−1

2
∇2

i + vS(r)

)
χi = εiχi

where the effective potential is defined as

vS(r) = vJ(r) + vext(r) + vxc(r)

and the exchange-correlation potential is defined through Exc[ρ]
as

vxc(r) =
δExc[ρ]

δρ
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Kohn–Sham DFT V

In a sense, what Kohn & Sham did was to sweep all the
unknowns under the rug. But they did this intelligently as they
had a good idea of how to approximate the unknown bits: the
exchange-correlation energy and its functional derivative.

Also, they knew that their formalism was in principle exact as
they had proved various theorems to that effect.

It turned out that their proofs were not mathematically sound,
but this was fixed by others.

The rest of the DFT story is how we find the
exchange-correlation functional Exc[ρ].
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