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Intro : AdS/CFT

String theory on AdS5 × S5 with five-form flux N, radius R and
string coupling gs.

is equivalent to N = 4 SYM with gauge group U(N), coupling
g2

YM

R
ls

= (g2
YMN)1/4

gs = g2
YM
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Intro : super-algebra

The SU(2,2|4) supersymmetry algebra of the theory contains
32 supercharges, including 16 Q’s and 16 S’s. The Q’s : as in
any SUSY gauge theory. The S’s only in super-conformal. The
algebra helps classify gauge invariant operators.

The gauge theory has 6 scalars (under the Lorentz group)
which are hermitian N × N matrices : X1 · · ·X6. Useful to
combine them into 3 complex combinations

X = X1 + iX2
Y = X3 + iX4
Z = X5 + iX6
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Intro : Operators→ states

In radial quantization, we pick a point in Euclidean
space-time, and the radial direction plays the role of time.

Gauge-invariant operators , e.g single traces trZ n and their
products, correspond to quantum states.

The radial scaling operator plays the role of the Hamiltonian,
which is the translation operator for global time in AdS.
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BPS operators/states

Generally, states belong to lowest weight repesentations of
SU(2,2|4). The lowest weight states are annihilated by the S’s.

Q’s are conjugate to the S’s in radial quantization and generate
the states in the representation.

For short representations, a fraction of the Q’s also annihilate
the LWS.
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shortest representations : half-BPS operators

Contain lowest weight states annihilated by half the Q’s

The lowest weight states are holomorphic gauge-invariant
functions of just one complex matrix Z = X5 + iX6

L0 = 1 : trZ
L0 = 2 : trZ 2, (trZ )2

L0 = 3 : trZ 3, trZ 2trZ , (trZ )2

BPS condition implies that L0 = L56
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BPS states : small traces and gravitons

In the regime of small L0, these correspond to gravitons in the
AdS5 × S5. The S5 :

x2
1 + x2

2 + · · · x2
5 + x2

6 = R2

has SO(6) isometries, Lij .

The states above are dual to graviton states – quantized small
perturbations of the SO(4,2)× SO(6) background metric –
which carry angular momentum for rotations in the 56 plane.

Single traces and multi-traces are orthogonal in planar limit
n� N
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Finite N effects

For large n, the states trZ n are no longer dual to gravitons,
rather BMN background at n ∼

√
N.

For n ∼ N, the trace basis is no longer the simplest way to
describe the BPS operators because single traces and
multi-traces can mix

trZ N+1 = trZ N trZ + · · ·

Cayley-Hamilton relations

A qualitative change in the description of the states : both in
gauge theory and gravity.
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Intro : Young diagram basis for half-BPS

A better basis is the Young diagram basis χR(Z ) where R is
Young diagram, described by lengths of rows R = [r1, r2, · · · ].
For L0 = n, we have Young diagrams with n boxes.

A linear combination of multi-traces determined by Young
diagram, e.g

χ[2](Z ) =
1
2

((trZ )2 + trZ 2)

χ[12](Z ) =
1
2

((trZ )2 − trZ 2)
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Intro : Half BPS→ Giant gravitons
Half-BPS states in ADS5 × S5 also arise from giant gravitons.
The S5 can be thought as S3 fibered over a disc in the (5,6)
plane.

x2
1 + x2

2 + x2
3 + x2

4 = R2 − x2
5 − x2

6

3-branes can wrap the S3 and rotate around a circle in the disc.
They will carry non-zero angular momentum L56 (like gravitons)
but are described by a Dirac-Born-Infeld brane action.

∫
d4σ
√

g +

∫
C(4)

Mc Greevy, Susskind, Toumbas, 2000
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Intro : Half BPS→ giant gravitons

There are also branes rotating around the (56) circle, which
form an S3 embedded in ADS5 rather than S5.

We will call these AdS5 giants as opposed to S5 giants.

The size of these branes grows as the angular momentum
increases
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Intro : Matters of size.

Important consequences :

I The brane has to be sufficiently large for the analysis of
quantum fluctuations around the brane solution to be valid.
Need angular momenta (L0 = L56) of order N.

I Single AdS5 giant graviton branes can have arbitrarily large
L56.

I But in S5 they have a cutoff N on the angular momentum.
This was dubbed the stringy exclusion principle.
Maldacena, Strominger, 1998

12 / 49



Intro : Half BPS giants and Young diagrams

The Young diagram description of operators gives a neat
description of finite N cutoffs :

c1(R) ≤ N

And naturally offers dual operators for these different giants.

I A single long column with L ∼ N boxes is an S5-giant with
L56 = L0 = L. Cut-off at N, explained by χ1N+1(Z ) = 0.

I A single row of length L ∼ N is an AdS5 giant with
L56 = L0 = L.

I Multiple columns : Multiple S giants.
I Multiple rows : Multiple AdS giants.

Corley, Jevicki, Ramgoolam , 2001

Balasubramanian, Berkooz, Naqvi, Strassler, 2001
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Intro : Young diagram basis - properties

I Diagonalize the inner product (from Yang-Mills theory)

〈χR(Z )χS(Z †)〉 ∼ δRS

which is not renormalized, and at zero coupling comes
from 〈Z i

j (Z †)k
l 〉 = δi

l δ
j
k

I connected to Sn representation theory and to U(N)
representations-

I These are related by Schur-Weyl duality : which can be
used to construct infinitely many charges in the gauge
theory (commuting with L0) which characterize the Young
diagram operators.

I 3-point function of these operators : Littlewood-Richardson
coefficients.
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Intro : Young diagram basis - properties

I Can be modified using Sn → Sn1 × Sn2 · · · projectors, to
describe strings attached to these branes.

I Counting of these modified operators agrees with
expectations from Gauss Law for branes on compact
spaces.
Berenstein, Balasubramanian, Feng, Huang , 2004

I The Young diagram picture connects with free fermions
and LLM geometries for operators of L0 order N2.

I Integrability found in studies of one-loop dilatation operator
acting on strings attached to giants.
Berenstein + collaborators ;

de Mello Koch + collaborators ... 2007 -2011
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Eighth-BPS case – The giants.
Focus on giant gravitons, which are large in S5. Now require
only that the brane solutions preserve 1/8 of the Q’s rather
than one half.

There is an elegant construction of these by Mikhailov in terms
of polynomials in 3 complex variables.

P(x , y , z) = 0

which define a 2-complex dimensional surface in C3.

The giant worldvolume is the intersection of this surface with
S5 ⊂ C3.

Time evolution simply

P(eitx ,eity ,eitz) = 0
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Eighth-BPS : the operators

The gauge theory operators which are eighth-BPS at zero
coupling g2

YM = 0 are holomorphic gauge invariant operators
made from 3 complex matrices.

tr(X 2Y 2Z ), tr(X 2YZYZ ), · · ·

At weak coupling, where g2
YM is non-zero but small, the

spectrum of eighth-BPS operators is given by the Kernel of the
1-loop dilatation operator

H = tr [X ,Y ][X̌ , Y̌ ] + [X ,Z ][X̌ , Ž ] + [Y ,Z ][Y̌ , Ž ]

The X ,Y part of this hamiltonian in the planar limit is related to
the Heisenberg spin chain. ( Minahan, Zarembo)
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Explicit forms of these BPS operators at finite N are not known
explicitly in general, but have been characterized in terms of Sn
group theory and explicit results for low n derived. ( general N )
Pasukonis, Ramgoolam : 2010

Tom Brown 2010

They are symmetrized traces in the leading large N limit, but
have 1/N corrections which can be constructed using Sn group
theory.
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Relation to chiral ring

The spectrum of Kernel states is isomorphic, as a vector space,
to the space of chiral operators.

This is formed by gauge-invariant operators modulo the
relations

[X ,Y ] = [Y ,Z ] = [X ,Z ] = 0

This is in turn the space of functions of diagonal matrices
X ,Y ,Z , invariant under permutations of the N entries.

Holomorphic functions on SN(C3).

Also isomorphic to Hilbert space of states constructed from N
bosons in a harmonic oscillator potential in 3 dimensions.
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HO states from giant gravitons

It was argued that the moduli space of giant gravitons (large in
S5) derived, starting from the Mikhailov polynomials, is a limit of
projective spaces.

Geometric quantization of these projective spaces gives the
Hilbert space of harmonic oscillators.

Biswas, Gaiotto, Lahiri , Minwalla; 2006 (BGLM)
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Outline

BPS operators↔ oscillator states↔ giant graviton geometries.

I Review of Mikhailov and BGLM.
I Fuzzy geometry and oscillator states to branes
I Fluctuations of some specific brane worldvolumes.
I Group theoretic labels and Gauge theory operators.
I Open problems.
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Mikhailov : Polynomials and giants

Take a polynomial in 3 variables, say degree is up to d

P(x , y , z) =
∑
i,j,k

i+j+k≤d

ci,j,kx iy jzk = 0

Take the intersection of this with |x |2 + |y |2 + |z|2 = R2.
Mikhailov shows that this an eighth-BPS brane worldvolume.

The space of solutions is parametrized by the ci,j,k . There are
n(d) = (d+1)(d+2)(d+3)

6 of them.

First guess is CPn(d)−1. Projective space because scaling
ci,j,k ∼ λci,j,k leaves equation invariant.
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Simple case : subtlety

Simplest case,

P = (cz + 1) = 0

The intersection with the sphere S5 is an S3 :

|x |2 + |y |2 = 1− 1/|c|2

When c →∞ the 3-sphere has maximal size. When c < 1,
there is no intersection with the S5.
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BGLM : A CP1 moduli space yet

SO the physical moduli space is the space |c| > 1.

BGLM show that the symplectic form, coming from the 3-brane
action, vanishes on |c| = 1. They define a map to CP1

parametrized by another coordinate w – closed off the holes.
And they find that the sympectic form on CP1 is NωFS where
ωFS is the standard Fubini-Study one.
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BGLM : CPn(d)−1 moduli space

Consider the set of polynomials of degree up to d

P(x , y , z) =
∑
i,j,k

i+j+k≤d

ci,j,kx iy jzk

The dimension of this space is n(d) = (d+1)(d+2)(d+3)
6

BGLM explain that the moduli space is still CPn(d)−1. There is a
non-trivial transformation between the cijk to wijk so that the
symplectic form is in the same cohomology class as NωFS .
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Geometric quantization : Hilbert space H(d)

The Hilbert space from geometric quantization of this moduli
space is H(d) : the space of holomorphic sections of the line
bundle of degree N over CPn(d)−1. Concretely :

∏
i,j,k

wni,j,k
i,j,k

∑
i,j,k

ni,j,k = N

This is isomorphic to the Hilbert space of N harmonic oscillators
in 3 dimensions, which written in second-quantized form∏

i,j,k

(a†i,j,k )ni,j,k |0〉
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Harmonic oscillators

∏
i,j,k

(a†i,j,k )ni,j,k |0〉

The 3D harmonic oscillator hamiltonian separates into a sum of
3 HO Hamiltonians for 3 directions x , y , z. This state has ni,j,k
particles in the state with i units of energy in the x ; j units in
the y and k units in the z-direction.

This is a giant graviton state with angular momenta

L12 =
∑

i

ini,j,k

L34 =
∑

j

jni,j,k

L56 =
∑

k

kni,j,k

This is also the Einstein solid model !! 27 / 49



BGLM : CP

To get the full spectrum of eighth-BPS operators, we take the
limit of d →∞

· · ·H(d) → H(d+1) → · · ·

Now each particle in the harmonic oscillator system can have
i , j , k with the only constraint i + j + k ≥ 0.
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If we restrict to Polynomials in one variable we recover a Hilbert
space spanned by

(a†i )ni |0〉

This is isomorphic to the space of Young diagrams.

" a†i creates a row of length i". The ni is the number of rows of
length i . Total number of rows (including length 0) is fixed at N.
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states to specific brane geometries ?

Specific geometries of branes are specific points on w-space. (
CP )

Important tool is fuzzy geometry of CP. Fuzzy geometry starts
with the endomorphism algebras of a sequence of Hilbert
spaces and approaches the algebra of functions (not
holomorphic) of some geometry – in this case CP

A lot of literature on this with the view that the CP ( CP2) is part
of space-time or part of a brane worldvoulme. Here the
interpretation is different, but maths is the same.

Toric geometry will also show up.
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Fuzzy geometry of CPM−1

Take the Hilbert space H of degree N holomorphic polynomials
in M variables WI , with I = 0,1 · · · ,M − 1

Arising from quantization of CPM−1 with symplectic form NωFS.

States (wavefunctions) are∏
I

W nI
I

Will write WI here for wi,j,k from previous.
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Fuzzy geometry : Endomorphism algebras

The endomorphism algebras End(HN) are spanned by
operators of the form

WI1WI2 · · ·WIn∂WJ1
∂WJ2

· · · ∂WJn

And transform as Vn,n̄ under the SU(M) isometry group of the
CPM−1 – a "composite" made of n fundamentals and n
anti-fundamentals.

There is a cutoff at n = N, because the Hilbert space has
polynomials of degree exactly N in these homogeneous
coordinates of the CP.
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Fuzzy geometry : SU(M) harmonics

The space CPM−1 is a coset SU(M)/U(M − 1) and has a
function space which can be decomposed under SU(M), with
representations

Fun(CPM−1) =
∞⊕

n=0

Vn,n̄

These are spanned by functions of the form

WIn · · ·WI1W̄Jn · · · W̄J1

|W |2n
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Truncated spectrum of harmonics and star product

The Endomorphism algebra HN gives a finite approximation of
the classical algebra of functions.
The map between operators and functions takes the form

WI1WI2 · · ·WIn∂WJ1
∂WJ2

· · · ∂WJn
↓

WI1WI2 · · ·WInW̄J1W̄J2 · · · W̄Jn

|W |2n

There is a star product on the functions which makes this map
an algebra homomorphism. At large N, the star product just
becomes the ordinary product.
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Fuzzy to toric geometry

The algebra of functions is generated by WI∂WJ which are the
SU(M) Lie algebra which acts on CPM−1.

Specific wavefunctions can be characterized by the
eigenvalues of the Cartan of this SU(M).

WI∂WI ↔WIW̄I

In the toric description of the CP, these magnitudes of the
homogeneous coordinates parameterize a simplex in RM−1.
The angles parametrize the T M−1 fibres of the toric fibration.

The toric base can be viewed as the weight spac of this SU(M)
and the wavefunctions form a discrete set of points on the
simplex.
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W1
2

W2
2

Θ1 - Θ2

Θ2

Θ1

HΘ1, Θ2L

W0
2

= 0

Figure: CP2 as a toric fibration ( e.g half-BPS states deg up to 2).The
base is the triangle (2-simplex) parametrized by |W1|2, |W2|2 and the
fiber is the torus (θ1, θ2). The fiber degenerates to a circle on the
edges of the triangle and to a point in the corners.
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Two maximal giants

One maximal giant
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Figure: States on fuzzy CP2
N with N = 4. The three corners of the

base correspond to the points where T 2 shrinks to a point, and the
states there are localized in all CP2 directions.
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Density matrix for a pure state

The density matrix associated with a wavefunction ψ is the
projector Pψ = ψ >< psi | so that

trH(PψO) = 〈ψ|O|ψ〉

Pψ is in End(HN). For ψ equal to∏
I

W nI
I

it becomes the function ∏
I(WIW̄I)

nI

|W |2
∑

I nI
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Special states at the vertices

Generic states are localized at points in the base simplex and
are uniformly spread along the tori.
At the vertices of the base simplex, are special points
corresponding to states

(WI)
N

where I runs over the triples (i , j , k) describing the monomials.
These correspond to the giant graviton geometry described by

P(x , y , z) = x iy jzk = 0
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These are the simplest states which can be mapped cleanly to
a polynomial. For more general states, we have to deal with the
subtleties of the map between c’s and w ’s – this could be
bypassed here due to the fact that these points on the moduli
space are special points invariant under U(1)3

The perturbations around these states, i.e nearby HO states
have a nice factorization property which can be understood
physically.

In some cases, this factorization can be exhibited by taking
limits of the partition function of the BPS states.
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Perturbations around the vacuum

The vacuum state is

wN
0,0,0

where c0,0,0 is the coefficient of the identity in the polynomial.

The perturbations are generated by

A†i,j,k = wi,j,k∂w0,0,0

with i + j + k small and positive. These are bulk states
(gravitons).
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When we analyze perturbations around the state

wN
1,1,1

corresponding to xyz = 0, which can be interpreted as a
composite of x = 0, y = 0.z = 0 branes.

There are excitations

A†i,j,k = w1+i,1+j,1+k∂w1,1,1 ; i + j + k ≥ 0

A†−1,j,k = w0,1+j,1+k∂w1,1,1

A†i,−1,k = w1+i,0,1+k∂w1,1,1

A†−1,j,k = w1+i,1+j,0∂w1,1,1

The first line is a set that has the same quantum numbers as
excitations around vacuum. They are bulk gravitons.

The second line are worldvolume excitations on the x-brane.
The x-brane is extended along y , z planes so can have
worldvolume (open string) excitations. Similarly for 3rd and 4-th
lines.
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There are also A−1,−1,k excitations which open string
excitations at the string which lies at intersection of two
3-branes.

These open string excitations should be visible by doing
worldvolume analysis of the branes ; or by considering open
strings by worldsheet methods.
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The simplest predictions around 1/2-BPS verified by "restricted
schur" operator constructions.

Also by local analysis of the symplectic form near the specified
monomials.
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geometric Young diagram labels for eighth BPS sector

Another outcome of analysing the CP-structure of the HIlbert
space is a Young diagram labelling for the eighth-BPS sector
states.
The half-BPS Young diagrams ( with up to d columns) and
maximum of N rows, come from quantizing the giant gravitons
from polynomials

P(x , y , z) = c0,0,0 + c0,0,1z + c0,0,2z2 + · · ·

(w0,0,i)
ni creates ni rows of length i . So degree decomposition

of the holomorphic wavefunction gives the Young diagram.
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degree decomposition for 1/8 BPS

Same thing can be done in the full 1/8 BPS case. for the states
coming from degree polynomials of degree up to d in 3
variables, we can organize the states according to how many
came from each degree.

Now at each degree there are complete representations of
U(3).

This leads to (Λ,Y ) labels : pairs of U(3)× U(N) YOung
diagrams.

For explicit small Λ ( e.g [2,2], [3,2] at any N we can explicit
construct such operators )

More generally, not known how to organize the Kernel of 1-loop
dilatation operator in this geometrical way.
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HI;d
N =

⊕
Y (N1,N2,··· ,Nd ;N)

⊕
Λ∈Reps(U(3))

VΛ⊗

 ⊕
Λ1···Λd

V Λ
Λ1,··· ,Λd

⊗d
k=1 V h;k ;Nk

Λk


This means that there is a labelling of BPS states by

|Λ,MΛ,Y ,Λ1, · · · ,Λd ,a,b1, · · · ,bd 〉

where Λ,Λ1, · · · ,Λd are irreps of U(3), a is a Littlewood-Richardson
multiplicity for Λ appearing in Λ1 ⊗ Λ2 · · · ⊗ Λd . The labels bk (for
k = 1 · · · d) run over the multiplicities of Λk appearing in
SymNk (Symk(V3)). The numbers Nk obey N1 + · · ·+ Nd ≤ N and
determine the Young diagram Y of U(N).

wp,q,r of fixed degree k form Symk (V3). Polynomials in wp,q,r form
another symmetric product.
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Open problems

I Match giant graviton geometries and oscillator states to
kernel of one-loop dilatation op.

I Find the (Λ,Y ) basis from gauge theory. There is a
(Λ,R, τ) basis at zero coupling. But one-loop dilatation
operator mixes the R, τ labels.

I What are the 1/8 BPS generalizations of the
Littlewood-Richardson coeffs. ?

I Integrability for strings attached to the 1/8 BPs states ?
I Is there a geometric quantization picture for the zero

coupling BPS states ?
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Open problems

I Apply some of the fuzzy geometry constructions to giant
gravitons for more general AdS/CFT examples – where S5

is replaced by Sasaki-Einstein. Chiral ring states ( analog
of harmonic oscillator partition functions ) from gauge
theory known.

I Sufficiently large non-BPS perturbations of eighth BPS
states are finite horizon black holes. Would like to
understand aspects black hole dynamics from the
combinatorics and correlators of gauge theory operators.
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