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Introduction : Physics Background

String theory :

Point particles moving in spacetime are replaced by
one-dimensional objects.

Worldlines - curves describing trajectories of points in
space-time - are replaced by Worldsheets (two-dimensional
surfaces).



A string theory is a theory of maps from worldsheets to
space-time.

Worldsheets have a genus h. A string theory has a parameter
gst , called the string coupling .

Contributions to physical observables, from genus h
world-sheets, are weighted by g2−2h

st



Traditionally string theories are described by writing a
worldsheet action

S =

∫
Σh

√
ggab∂aXµ∂bX νGµν

Xµ are space-time coordinates. They are dynamical variables
Xµ(σ, τ) depending on world-sheet coordinates (σ, τ).

This traditional approach leads to integrals overMh,n, the
moduli space of conformal structures of the world-sheet metric
g



A recent theme in last 20 years :

Emergent string theories.



Simplest string theories emerge from Matrix integrals.

Z =

∫
dX e−

1
2 trX 2

X is an N × N matrix, can be restricted to be hermitian today.

The string theory thus emerging is simplest at large N. The
contributions from genus h are weighted by N2−2h.

In Quantum field theories the exponent is replaced by an action
e.g e

1
2

R
d4xtr∂µX∂µX−trX 2

and the integral dX becomes a path
integral.



In this talk : I will show how the Gaussian Matrix integral leads
to a very simple string theory

The spacetime is P1

The maps are holomorphic.





What kind of holomorphic maps ?

The curve and map are defined by equations involving
coefficients which are algebraic numbers i.e they are in Q̄.

Any curve defined over Q̄ can appear among the worldsheets
for appropriate observables.



OUTLINE

I The Matrix model : From correlators to counting triples of
permutations.

I Physical Interpretation : Target space of P1 and strings
over algebraic numbers.

I Multi-Matrix Model : New invariants of the absolute Galois
group.

I I Open problems
I Emergent string theories.



PART 1 : One Matrix Model

Z =

∫
dX e−

1
2 trX 2

X : N × N Hermitian matrix

dX ≡
∏

i<j dRe(Xij)dIm(Xij)
∏

i dRe(Xii)

Z(g) =

∫
dXe−

1
2 trX 2+V (X ,g) =

∫
dXe−

1
2 trX 2+g3trX 3+g4trX 4+···



One Matrix Model : Obserbvables

The Observables of interest : Trace moments of the matrix
variables.

〈O(X )〉 =
1
Z

∫
dXe−

1
2 trX 2O(X ) · · ·

The O(X ) is a function of traces, e.g O(X ) = (trX )p1(trX 2)p2 · · · .

Fixing the total number of X to be n, the number of these
observables is p(n). The number of partitions of n.

n = p1 + 2p2 + 3p3 + · · ·



Partitions of n correspond to conjugacy classes of the
symmetric group Sn, of all permutations of n objects.

It is possible to associate observables to permutations

Oσ(X )

which only depend of the conjugacy class.

Oασα−1(X ) = Oσ(X )



X : V → V

X ⊗ X : V ⊗ V → V ⊗ V .

trX trX = trV⊗V(X⊗ X)

trX2 = trV⊗V((X⊗ X)σ).

where σ(vi1 ⊗ vi2) = vi2 ⊗ vi1 .



Oσ(X ) = X i1
iσ(1)

X i2
iσ(2)
· · ·X in

iσ(n)

Defining X = X ⊗ X ⊗ · · ·X we can write the above as

Oσ(X ) = trV⊗n(X σ)

Note :

I invariance under conjugation by σ, and
I

Oσ(X ) = (trX)p1(σ)(trX2)p2(σ) · · · (trXn)pn(σ)



The numbers p1(σ),p2(σ).. give the numbers of 1-cycles,
2-cycles etc. of the permutation – this cycle structure
determines the conjugacy class of the permutation in the
symmetric group Sn.

Example : A permutation (123)(45) in S5 cyclically permutes
1,2,3 and swops 4,5.

In this case

Oσ(X ) ∼ trX 3trX 2



We will choose a normalization of observables as

Oσ(X ) = N−n+p1(σ)+p2(σ)+···+pn(σ)(trX )p1(trX 2)p2 · · · (trX n)pn

= NCσ−n(trX )p1(trX 2)p2 · · · (trX n)pn

We will define a delta function over the symmetric group

δ(σ) = 1 if σ = 1
= 0 otherwise



Theorem 1 :

〈Oσ〉 =
1

(2n)!

∑
σ∈[σ]

∑
γ∈[2n]

∑
τ∈S2n

δ(σγτ)NCσ+Cτ−n

The sum γ is over the conjugacy class [2n] – of permutations
with n cycles of length 2.

This is the sum over Feynman diagrams of the Gaussian matrix
model.



Outline of Proof

Basic results of Gaussian integration :

〈X i1
j1

X i2
j2
〉 = δi1

j2
δi2

j1

〈X i1
j1

X i2
j2

X i3
j3
〉 = 0

or for any odd number.

〈X i1
j1

X i2
j2

X i3
j3

X i4
j4
〉 = 〈X i1

j1
X i2

j2
〉〈X i3

j3
X i4

j4
〉+ 〈X i1

j1
X i3

j3
〉〈X i2

j2
X i4

j4
〉+ 〈X i1

j1
X i4

j4
〉〈X i2

j2
X i3

j3
〉

A general correlator factors into a product of quadratic
correlators. One sums over all ways of pairing the variables.
This is WICK’s theorem and basic result in quantum field theory.



The basic 2-point function

〈X i1
j1

X i2
j2
〉 = δi1

j2
δi2

j1

The RHS is the matrix elements of a permutation (12) acting on
V ⊗ V .

〈ei1 ⊗ ei2 |(12)|ej1 ⊗ ej2〉

Each elementary Wick contraction is a permutation. The sum
over Wick contractions is a sum over permutations which
products of cycles of length 2.



These two permutations σ, γ appear as follows :

〈trV⊗2n (Xσ)〉 =
∑
γ∈[2n]

trV⊗2n (γσ)

The trace of the permutation, viewed as an operator in V⊗2n, is
NCγσ .

A minor re-writing leads to the result stated

〈Oσ〉 =
1

(2n)!

∑
σ∈[σ]

∑
γ∈[2n]

∑
τ∈S2n

δ(σγτ)NCσ+Cτ−n



Use a classic theorem : The Riemann Existence theorem,
which relates the counting of such strings of permutations to

the counting of equivalence classes of holomorphic maps
f : Σh → P1, from Riemann surface Σh of genus h to target P1.



Equivalence of maps :

Σh φ
−→

Σh

f1 ↘ ↙ f2
P1

f1 = f2 ◦ φ.

Automorphisms : Bi-holomorphic φ : X → X

Σh φ
−→

Σh

f ↘ ↙ f
P1

f = f ◦ φ.



Holomorphic maps between Riemann surfaces are branched
covers.

An interval through a generic point on the target Riemann
surface : inverse image has d intervals, where d is the degree

of the map. A branch point has fewer inverse images.





Each branch point has a ramification profile which is a partition
of the degree d . The ramification data determines the genus h

of Σh by the Riemann Hurwitz formula.



〈Oσ〉 =
∑

f :Σh→P1

1
|Aut f |

N2−2h

The Gaussian Matrix model correlator is a sum over
equivalence classes of holomorphic maps to P1, branched at 3
points, with ramification profiles [σ] , [γ] = [2n] and [τ ] which is
general.

Weighted by g2h−2
st where gst = 1

N



For a Gaussian model perturbed by the potential
V (gi ,X ) = g3trX 3 + g4trX 4 + · · · , the exponential of the
potential can be viewed as an observable.

Hence the above observation about correlators and their
relation to counting triples of permutations continues to hold for
the perturbed Gaussian model, and for observables inserted in
that model.



PART 2 : Physics Interpretation

The Gaussian Matrix model is equivalent to a topological string
theory, with target space P1 which localizes to holomorphic

maps with three branch points.

A perturbed Gaussian model also has such an interpretation
with eV treated as an observable.



Implication : Hurwitz counting results from Saddle point

By considering a potential V = trX m we can get explicit Hurwitz
space counting results for maps where [σ] = [mn]. The cases
m = 3,4,6 were done in the paper - for genus genus zero
worldsheets using saddle point methods.

For the case m = 6 , [σ] = [6n] , [γ] = [23n] and [τ ] is summed
over all possible. For such maps,

∑
f

1
|Autf |

=
1
2

(10)n(3n − 1)!

(2n + 1)!(n + 1)!



MEANING OF THREE ?

Belyi theorem : A Riemann surface is defined over algebraic
numbers iff it admits a map to P1 with three branch points.

Riemann surface can be described by algebraic equations, e.g
an elliptic curve

y2 = x3 + ax2 + bx

If a,b are algebraic numbers, i.e. solutions to polynomial
equations with rational coefficients Q, then the Riemann
surface is defined over Q̄, i.e for x ∈ Q̄ , y ∈ Q̄



The field Q̄ is the algebraic closure of Q and contains all
solutions of polynomial equations with rational coefficients.

It contains finite extensions of Q such as Q(
√

2).

This is numbers of the form a + b
√

2, where a,b are rational.
They form a field, closed under addition, multiplication, division.

An important group associated to this extension is the group of
automorphisms which preserves the rationals. In this case, the
only non-trivial element of the group is

√
2→ −

√
2. We say

Gal(Q(
√

2)/Q) = Z2



The absolute Galois group Gal(Q̄/Q) contains as subgroups,
all the finite Galois groups of finite dimensional extensions.

It acts on the algebraic numbers coefficients of the defining
equations of the curve Σh and of the map f .

Hence the Galois group acts on the (equivalence classes of)
permutation triples, equivalently the Feynman graphs of the

1-matrix model.



Calculations in Quantum Field theory – and Matrix integration –
are often done diagrammatically. For the computation of
< trX 4 >, we could draw on a plane, a black dot with four

vertices coming out of it.

The sum over Wick contractions is a sum over ways of joining
the lines. If the lines cross when drawn on a plane, then we can

add a handle that the line rides over. So we have a graph
embedded on a higher genus surface.

These are the Feynman graphs – in the simple case of 1-Matrix
model. ’t Hooft ( 70’s) observed that the contributions to

physical quantities of higher genus graphs are sub-leading in
the large N limit.



In more complicated physics problems, the lines are associated
with space-time functions (propagators). They can be of

different types. Electron propagators or photon propagators
which are different functions of space-time.



Grothendieck associated Dessins to the permutation triples,
which are essentially the Feynman graphs of the 1-matrix

model.

More precisely, for each propagator, we add a white vertex. In
Grothendiek Dessins, with all edges labelled, we have a

permutation σ describing the cyclic permutations around the
black vertices. And permutation γ describing permutations

around the white vertices.



The multiplicity of Feynman graphs can be organised into
orbits of the Galois group action.

Elements in the same orbit contribute with equal weight, since
Autf is a Galois invariant.





PART 3 : Multi-matrix models

An obvious generalization to consider is multi-matrix models,
where we have integrals over multiple matrix variables, e.g

X ,Y .

The edges of the Feynman graphs, which are propagators are
now colored, i.e they can be X or Y propagators. So they

correspond to colored-edge versions of Grothendieck Dessins.



Computations of observables can be done using sums of triples
of permutations.

Again can use permutations to construct observables

trV⊗m+n(X⊗m ⊗ Y⊗nσ)

But σ and ασα−1 only give the same observable if α ∈ Sn × Sm
subgroup of Sn+m.

Wick contractions are sums over conjugacy classes of
subgroups.

Holomorphic maps, with coloring of the ramification points
above 1.



A given multi-matrix observable, e.g trX 2Y 2trXtrY 3 can receive
zero contribution from one Dessin in a Galois orbit and
non-zero from another.



I A generic correlator in the multi-matrix model is not a
Galois invariant.

I But we can build invariants from multi-matrix model
correlators with a few steps.



GAUSSIAN = CLEAN !!

General Grothendieck Dessins have arbitrary [σ], [γ], [τ ]. The
branch points can be chosen at 0,1,∞.

The Dessins are bi-partitite graphs drawn the sphere, with
black and white vertices. Black vertices have numbers of edges
corresponding to the cycle structure of [σ]. White vertices
correspond to [γ].

Dessins with [γ] = [2n] are Clean Dessins



Any dessin can be mapped to a clean Dessin. Any map with
three branch points at 0,1,∞ can be mapped to a new map
with only simple branchings using f → 4f (1− f ).

Cleaning is a process used to define Galois invariants in the
Dessins literature.

The restriction [γ] = [2n] is not significant from the point of view
of Galois invariants.





I Colorings of the Dessins allow the definition of new
invariants of the action of Gal(Q̄/Q) on the Dessins :
constructed from lists of multi-matrix observables which
receive contributions from the Dessin.

I Take certain unions and intersections.





Known invariants can be described in terms of these lists, e.g
Flower-shaped trees.



Two of Many questions

How are the Physics-inspired invariants constructed from
coloured Dessins related to number theoretic invariants ?

Belyi theorem suggests that the string theory of 1-matrix model
can be defined over Q̄. Is there an explicit construction of string
amplitudes and path integrals over Q̄ ?



This model was studied, with the possibility of an additional
general potential V (gi ,X ), around early nineties.

By tuning gi to different critical points, one had a series of dual
string theories c < 1 models coupled to 2D gravity (Liouville
theory).


