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One Matrix Model

Z =

∫
dX e−

1
2 trX 2

X : N × N Hermitian matrix

dX ≡
∏

i<j dRe(Xij)dIm(Xij)
∏

i dRe(Xii)

Z(g) =

∫
dXe−

1
2 trX 2+V (X ,g) =

∫
dXe−

1
2 trX 2+g3trX 3+g4trX 4+···



One Matrix Model : Obserbvables

The Observables of interest : Trace moments of the matrix
variables.

〈O(X )〉 =

∫
dXe−

1
2 trX 2O(X ) · · ·

The O(X ) is a function of traces, e.g O(X ) = (trX )p1(trX 2)p2 · · · .

Fixing the total number of X to be n, the number of these
observables is p(n). The number of partitions of n.

n = p1 + 2p2 + 3p3 + · · ·



Partitions of n correspond to conjugacy classes of the
symmetric group Sn, of all permutations of n objects.

It is possible to associate observables to permutations

Oσ(X )

which only depend of the conjugacy class.

Oασα−1(X ) = Oσ(X )



Conjugacy classes in Sn are characterized by the cycle
decomposition of the permutations. e.g a permutation
(123)(45) in S5 cyclically permutes 1,2,3 and swops 4,5.

The conjugacy class of such a permutation corresponds to
trX 3trX 2, i.e if σ = (123)(45),

Oσ(X ) ∼ trX 3trX 2



We will choose a normalization of observables as

Oσ(X ) = N−n+p1(σ)+p2(σ)+···+pn(σ)(trX )p1(trX 2)p2 · · · (trX n)pn

= NCσ−n(trX )p1(trX 2)p2 · · · (trX n)pn

We will define a delta function over the symmetric group

δ(σ) = 1 if σ = 1
= 0 otherwise



Theorem 1 :

〈Oσ〉 =
1

(2n)!

∑
σ∈[σ]

∑
γ∈[2n]

∑
τ∈S2n

δ(σγτ)NCσ+Cτ−n

Follows using Wick’s theorem. The sum over γ, which is in [2n]
is the sum over Wick contractions.

Equivalently, this is the sum over Feynman diagrams of the
Gaussian matrix model.



Use a classic theorem : The Riemann Existence theorem,
which relates the counting of such strings of permutations to

the counting of equivalence classes of holomorphic maps
f : Σh → P1, from Riemann surface Σh of genus h to target P1.

Holomorphic maps between Riemann surfaces are branched
covers.

An interval through a generic point on the target Riemann
surface : inverse image has d intervals, where d is the degree

of the map. A branch point has fewer inverse images.





Each branch point has a ramification profile which is a partition
of the degree d . The ramification data determines the genus h

of Σh by the Riemann Hurwitz formula.



〈Oσ〉 =
∑

f :Σh→P1

1
|Aut f |

N2−2h

The Gaussian Matrix model correlator is a sum over
equivalence classes of holomorphic maps to P1, branched at 3
points, with ramification profiles [σ] , [γ] = [2n] and [τ ] which is
general.

Weighted by g2h−2
st where gst = 1

N



Physics Interpretation

The Gaussian Matrix model is equivalent to a topological string
theory, with target space P1 which localizes to holomorphic

maps with three branch points.

A perturbed Gaussian model also has such an interpretation
with eV treated as an observable.



MEANING OF THREE ?

Belyi theorem : A Riemann surface is defined over algebraic
numbers iff it admits a map to P1 with three branch points.

Riemann surface can be described by algebraic equations, e.g
an elliptic curve

y2 = x3 + ax2 + bx

If a,b are algebraic numbers, i.e solutions to polynomial
equations with rational coefficients Q, then the Riemann
surface is defined over Q̄, i.e for x ∈ Q̄ , y ∈ Q̄



The field Q̄ is the algebraic closure of Q and contains all
solutions of polynomial equations with rational coefficients.

It contains finite extensions of Q such as Q(
√

2).

This is numbers of the form a + b
√

2, where a,b are rational.
They form a field, closed under addition, multiplication, division.

An important group associated to this extension is the group of
automorphisms which preserves the rationals. In this case, the
only non-trivial element of the group is

√
2→ −

√
2. We say

Gal(Q(
√

2)/Q) = Z2



The absolute Galois group Gal(Q̄/Q) contains as subgroups,
all the finite Galois groups of finite dimensional extensions.

It acts on the algebraic numbers coefficients of the defining
equations of the curve Σh and of the map f .

Hence the Galois group acts on the (equivalence classes of)
permutation triples, equivalently the Feynman graphs of the

1-matrix model.

Grothedieck associated Dessins to the permutation triples,
which are essentially the Feynman graphs of the 1-matrix

model.



The multiplicity of Feynman graphs can be organised into orbits
of the Galois group action.

Elements in the same orbit contribute with equal weight, since
Autf is a Galois invariant.





An obvious generalization to consider is multi-matrix models,
where we have integrals over multiple matrix variables, e.g

X ,Y .

The edges of the Feynman graphs, which are propagators are
now colored, i.e they can be X or Y propagators. So they

correspond to colored-edge versions of Grothendieck Dessins.



I A given multi-matrix observable, e.g trX 2Y 2trXtrY 3 can
receive zero contribution from one Dessin in a Galois orbit
and non-zero from another.

I Colorings of the Dessins allow the definition of new
invariants of the action of Gal(Q̄/Q) on the Dessins :
constructed from lists of multi-matrix observables which
receive contributions from the Dessin.

I Known invariants can be described in terms of these lists.
I See paper





Two of Many questions

How are the Physics-inspired invariants constructed from
coloured Dessins related to number theoretic invariants ?

Belyi theorem suggests that the string theory of 1-matrix model
can be defined over Q̄. Is there an explicit construction of string
amplitudes and path integrals over Q̄ ?


