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Example σ1, σ2, σ3 are 3 permutations among the 6 in S3.

σ1 : {1, 2, 3} → {1, 2, 3}
σ2 : {1, 2, 3} → {2, 1, 3}
σ3 : {1, 2, 3} → {2, 3, 1}
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σ2(1) = 2, σ2(2) = 1, σ2(3) = 3
σ2 = 213
σ2 = (12)(3)
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Other ways of describing σ2 :

σ2(1) = 2, σ2(2) = 1, σ2(3) = 3
σ2 = 213
σ2 = (12)(3)

In cycle notation

σ1 = (1)(2)(3)
σ2 = (12)(3)
σ3 = (123)

Two permutations σ, σ′ having the same cycle structure are
related by conjugaction .

σ = γσγ−1

e.g (12)(3) and (13)(2) are related by γ = (1)(23).



S3 has 3 cycle structures, equivalently 3 conjugacy classes.
Consider the possible states of 3-strings winding around a
circle.



Starting from a configuration of such strings we can label the
points above a fixed spacetime point and obtain a permutation.



The number of winding states, or cycle structures in Sn, is the
number of partitions of n, called p(n) : a well-studied number in
Mathematics. Its asymptotics is relevant to Hagedorn transition.
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The number of winding states, or cycle structures in Sn, is the
number of partitions of n, called p(n) : a well-studied number in
Mathematics. Its asymptotics is relevant to Hagedorn transition.

3 = 1 + 1 + 1
2 = 2 + 1
3 = 3

When we consider string interactions, the permutations
themselves matter, not just the cycle structure they belong to.



The connection between strings and permutations plays a
central role in gauge-string duality. I will explain 3 connections
to illustrate this.

◮ Large N expansion of 2 dimensional Yang Mills partition
function.

◮ Large N expansion of Hermitian Matrix model correlators.

◮ Feynman Graph counting in scalar field theory.

The third example suggests that Large N is not crucial to
strings emerging from Quantum Field theory.



Gauge-String Duality.
Some dynamics of quantum field theory with matrix fields has a
dual description in terms of String theory. Maldacena’s
AdS/CFT duality between strings on AdS5 × S5 and N = 4
SYM with U(N) gauge group is one of the richest examples.
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Gauge-String Duality.
Some dynamics of quantum field theory with matrix fields has a
dual description in terms of String theory. Maldacena’s
AdS/CFT duality between strings on AdS5 × S5 and N = 4
SYM with U(N) gauge group is one of the richest examples.

In lower dimensions, we have 2D pure Yang Mills theory with
U(N) gauge group, on Riemann surface ΣG of genus G and
area A.

This theory is quasi-topological and the partition function
depends only on G, A. In this case, the string theory has 2D
target ΣG, as discovered by Gross and Taylor in mid-nineties.



Permutations are key to organising the gauge invariant
operators. For 2dYM on a cyclinder, defining the partition
function requires specifying the boundary condition, which is a
group element U in U(N) at each boundary.



The gauge-invariant functions are traces.

tr(U3), trU2trU, (trU)3

Some are linear in traces, some non-linear. Permutations give
a unified linear way way of thinking about all of them.



trU2 = U i1
i2

U i2
i1

= U i1
iσ(1)

U i2
iσ(2)

with σ = (12)

(trU)2 = U i1
i1

U i2
i2

= U i1
iσ(1)

U i2
iσ(2)

Multi-traces are constructed by using different permutations.

trV⊗n(σU⊗n)

Different permutations with the same cycle structure give the
same trace. Replcing σ → γσγ−1 leaves the trace invariant.



In 2dYM, the partition function Z (U1, U2) on a cylinder (and any
Riemann surface) can be written exactly in terms of
representations of U(N).

We can transform to a permutation basis

Z (σ1, σ2) =

∫
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Riemann surface) can be written exactly in terms of
representations of U(N).

We can transform to a permutation basis

Z (σ1, σ2) =

∫
dU1dU2Z (U1, U2)trn(σ1U†

1)trn(σ2U†
2)

Z (σ1, σ2) =
∑
γ∈Sn

δ(σ1γσ2γ
−1)

This is the answer in the zero area limit.



The δ function is defined like a Kronecker delta, except over the
symmetric group :

δ(σ) = 1 if σ = identity
= 0 otherwise

Can be manipulated like Kronecker Delta.



The δ function is defined like a Kronecker delta, except over the
symmetric group :

δ(σ) = 1 if σ = identity
= 0 otherwise

Can be manipulated like Kronecker Delta.

The permutation γ is the re-lebelling of sheets of the cover in
going from one boundary to another. The delta function
ensures that the two cycle structures are the same.



Figure: Paths and permutations on cylinder



At non-zero area the sum is modified to include additional
permutations which can be interpreted as a counting of
branched covers (holomorphic maps) where ∂z f of the map is
allowed to vanish at certain points on the worldsheet.



Let us leave 2dYM aside, to give a simple illustration of this
point in the Hermitian matrix model.

The physics of the Gaussian measure for the eigenvalue
distribution is encoded in correlators of traces :

∫
dX e− 1

2 trX 2
O(X )

The observables are general traces :

trX
trX 2, trXtrX
trX 3, trX 2trX , trXtrXtrX



One finds that

< Op >=
1
n!

∑
σ1∈p∈Sn

∑
σ2∈[2n/2]

∑
σ3

δ(σ1σ2σ3)N
Cσ3

Here n is even. The permutation σ3 is arbitrary, but σ2 has the
cycle structure [2n/2], i.e of type

(12)(34) · · · (n − 1 n)

This comes from the fact that the computation of the correlators
can be done by Wick contractions, which are pairings of the n
matrices in the observable.



One can use some classical mathematics of Riemann to relate
this formula directly to the geometry of branched covers, i.e
holomorphic maps a worldsheet Σ to a sphere.

Holomorphy :

∂z̄ f = 0

The powers of N keep track of the genus of the worldsheet.

Three permutations : If ∂z f (P) = 0 then f (P) ∈ {0, 1,∞}.
Details in arXiv:1010.1634



A third connection involves a QFT without large N. Just real
scalar field theory, for concreteness, take vacuum diagrams in
φ4 theory.

Calculations in QFT are simplified by organizing the large
number of Wick contractions, into graphs, each of which comes
with a symmetry factor.



For v = 1 there is one graph. For v = 2, there are 3 graphs, etc.

Figure: One vertex vacuum diagram in φ4 theory

Figure: Two vertex vacuum diagrams in φ4 theory



This sequence of vacuum diagrams

1, 3, 7, 20, 56, 187, 654, 2705, 12587, 67902, 417065, ..

has an expresion in terms of string amplitudes, of the kind that
appears in 2dYM.



This sequence of vacuum diagrams

1, 3, 7, 20, 56, 187, 654, 2705, 12587, 67902, 417065, ..

has an expresion in terms of string amplitudes, of the kind that
appears in 2dYM.

Number of diagrams with v vertices

=
1

|H1||H2|

∑
σ1∈H1∈S4v

∑
σ2∈H2∈S4v

∑
γ∈S4v

δ(σ1γσ2γ
−1)



H1 is a subgroup of S4v :

(S4 × S4 · · · × S4) ⋉ Sv ≡ Sv [S4]

There are v copies of S4 and Sv acts as an automorphism of
this product group.
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H1 is a subgroup of S4v :

(S4 × S4 · · · × S4) ⋉ Sv ≡ Sv [S4]

There are v copies of S4 and Sv acts as an automorphism of
this product group.

H2 is a subgroup of S4v :

(S2 × S2 · · · × S2) ⋉ S2v ≡ S2v [S2]

H1 is the symmetry of the v 4-valent vertices. H2 is the
subgroup of permutations which commute with

(12)(34) · · · (4v − 1 4v)

which has to do with the pairing-property of Wick contractions.



The key step in deriving this expression is to describe the graph
in terms of a pair of data Σ0, Σ1, where Σ0 is associated with
vertices and Σ1 with Wick contractions

Figure: Two vertex vacuum diagrams in φ4 theory



Figure: Numbering the half-edges



(a) Σ0 = < 1, 2, 3, 4 >< 5, 6, 7, 8 >

Σ1 = (12)(34)(56)(78)

(b) Σ0 = < 1, 2, 3, 4 >< 5, 6, 7, 8 >

Σ1 = (23)(16)(47)(58)

(c) Σ0 = < 1, 2, 3, 4 >< 5, 6, 7, 8 >

Σ1 = (15)(26)(37)(48)

This also leads to neat symmetric group expressions for
symmetry factors which have a string interpretation.
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Conclusions
The connection between Strings and Permutations is
fundamental to gauge-string duality.

There are “topological” dualities between QFT and strings
related to the counting of Feynman diagrams which do not
involve large N.

Are there physical versions of such dualities involving non-trivial
dependence on space-time and momenta ?


