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ABSTRACT

Context. Previous work has shown that the tidal interaction between abinary system and a circumbinary disc leads to the formationof a large
inner cavity in the disc. Subsequent formation and inward migration of a low mass planet causes it to become trapped at thecavity edge, where
it orbits until further mass growth or disc dispersal. The question of how systems of multiple planets in circumbinary discs evolve has not yet
been addressed.
Aims. We present the results of hydrodynamic simulations of multiple low mass planets embedded in a circumbinary disc. The aimis to
examine their long term evolution as they approach and become trapped at the edge of the tidally truncated inner cavity.
Methods. A grid–based hydrodynamics code was used to compute simulations of 2D circumbinary disc models with embedded planets. The
3D evolution of the planet orbits was computed, and inclination damping due to the disc was calculated using prescribed forces. We present a
suite of simulations which study the evolution of pairs of planets migrating in the disc. We also present the results of hydrodynamic simulations
of five-planet systems, and study their long term evolution after disc dispersal using a N-body code.
Results. For the two-planet simulations we assume that the innermostplanet has migrated to the edge of the inner cavity and remains trapped
there, and study the subsequent evolution of the system as the outermost planet migrates inward. We find that the outcomeslargely depend
on the mass ratioq = mi/mo, wheremi (mo) is the mass of the innermost (outermost) planet. Forq < 1, planets usually undergo dynamical
scattering or orbital exchange. For values ofq > 1 the systems reach equilibrium configurations in which the planets are locked into mean
motion resonances, and remain trapped at the edge of the inner cavity without further migration. Most simulations of five-planet systems we
performed resulted in collisions and scattering events, such that only a single planet remained in orbit about the binary. In one case however, a
multiplanet resonant system was found to be dynamically stable over long time scales, suggesting that such systems may be observed in planet
searches focussed on close binary systems.
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1. Introduction

At the time of writing approximately 250 extrasolar planets
have been discovered, of which about 30 are members of binary
or multiple stellar systems (Eggenberger et al. 2004; Mugrauer
et al. 2007). Most of the planets found in binaries orbit around
one of the stellar component in so–called S–type orbits, and
the majority of binaries harbouring planets have orbital separa-
tions ab ≥ 100 AU. There are, however, exceptions to these
cases. The short period binary systems Gliese 86,γ Cephei
and HD41004 haveab ∼ 20 AU, and contain planets orbit-
ing at 1 - 2 AU from the central star (Eggenberger et al. 2004;
Mugrauer & Neuhauser 2005). Although there are no known
planets which orbit around both stellar companions in a bi-
nary system consisting of main sequence stars (i.e. circumbi-
nary planets on so–called P-type orbits), there are two sys-
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tems which indicate that the formation of circumbinary plan-
ets is feasible. The first is the circumbinary planet with mass
mp = 2.5 MJ and orbital radius 23 AU observed in the radio
pulsar PSR 1620-26 (Sigurdsson et al. 2003). The second is the
mp = 2.44 MJ planet orbiting about the system composed of
the star HD202206 and its 17.4 MJ brown dwarf companion
(Udry et al. 2002). The lack of observed circumbinary planets
is probably due to the fact that short period binaries are usually
rejected from observational surveys.

The observation of planets in binary systems is consis-
tent with detections of circumstellar discs in binary systems.
Several circumbinary discs have been detected around spectro-
scopic binaries such as DQ Tau, AK Sco, and GW Ori. The
circumbinary disc around GG Tau has been directly imaged
(Dutrey et al. 1994), revealing the presence of a tidally trun-
cated inner cavity generated by the central binary. The exis-
tence of these circumbinary discs opens up the possibility of
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circumbinary planets forming. Combining the observationsof
circumbinary discs, with the fact that∼ 50% of solar-type stars
are members of binaries (Duquennoy & Mayor 1991), suggests
that circumbinary planets are probably common.

To date there has been a relatively modest amount of the-
oretical work examining planet formation in binary systems.
Results from previous studies suggest that planetesimal ac-
cretion should be possible in regions of both circumstellar
(Marzari & Scholl 2000; Thebault et al. 2006) and circumbi-
nary discs (Moriwaki & Nakagawa 2004; Scholl et al. 2007).
Quintana & Lissauer (2006) simulated the late stages of ter-
restial planet formation in circumbinary discs. They foundthat
planetary systems similar to those around single stars can be
formed around binaries, provided the ratio of the binary apoc-
entre distance to planetary orbit is≤ 0.2. In general binaries
with larger maximum separations lead to planetary systems
with fewer planets.

The evolution of a low mass planetary core embedded in
a circumbinary disc was investigated recently by Pierens &
Nelson (2007) (hereafter referred to as Paper I). This work ex-
amined the migration and long term orbital evolution of planets
with masses ofmp = 5, 10 and 20M⊕ under the action of disc
torques. It was found that the inward drift of a planet undergo-
ing type I migration is stopped at the edge of the cavity formed
by the binary. This halting of migration is due to positive coro-
tation torques operating which can counterbalance negative
Lindblad torques. Such an effect is known to be at work in ac-
cretion disc regions where there is a strong positive gradient of
the surface density (Masset et al. 2006). Interestingly, Pierens
& Nelson (2007) showed that the stopping of migration in cir-
cumbinary discs occurs in a region of long-term dynamical sta-
bility, suggesting that such planets may be able to survive there
over long times, or at least remain in the disc for long enough
to form a gas giant planet. The evolution of giant planets in
circumbinary discs was considered by Nelson (2003).

In this paper, we extend the model presented in Paper I by
considering the evolution of multiple planets embedded in acir-
cumbinary disc. Here, we wish to examine how multiple plan-
ets interact with each other if they form at large distance from
the binary and successively migrate toward the cavity edge.In
particular, we want to look at whether or not the trapping of
a planet at the cavity edge, and the subsequent migration of
additional planets to its vicinity lead to growth of the planet
through collisions, the formation of mean motion resonances,
or destablisation of the system through gravitational scattering.

To address these issues, we first consider a system which
consists of a pair of planets with masses ofmp = 5, 10 and 20
M⊕. We assume that one planet is trapped at the edge of the cav-
ity while the outermost planet migrates in from larger radius.
The results of the simulations show that the final outcome of
such a system generally depends on the mass ratioq = mi/mo

(wheremi is the mass of the inner planet andmo is the mass of
the outer planet). Interestingly, we find that systems withq ≥ 1
can reach a steady state such that the planets are locked into
resonance and remain trapped at the cavity edge. Most of the
systems withq < 1, however, are unstable and lead to events
such as scattering or dynamical exchange.

We performed a second set of simulations consisting of
five-planet systems embedded in a circumbinary disc. Of three
simulations performed, two resulted in a single planet orbiting
around the binary because of collisions and scattering events.
The remaining simulation resulted in a three-planet systemre-
maining, with all planets in mutual mean motion resonances.
This configuration was found to be stable over long time scales.

This paper is organized as follows. In section 2 we describe
the physical model and the numerical method. In section 3 we
describe the results of simulations aimed at studying the evo-
lution of pairs of planets embedded in a circumbinary disc. We
then present in section 4 the simulations of five-planet systems
embedded in a circumbinary disc. We finally discuss our results
and present our conclusions in section 4.

2. Physical model and numerical setup

2.1. Disc and planet evolution

As in Paper I, we adopt a 2D disc model for which we assume
no vertical motion. The equations governing the disc evolution
are described in detail in Paper I and therefore will not be dis-
cussed here.
In Paper I, the planet orbit and the disc midplane were assumed
to be coplanar. However, the simulations presented here exam-
ine the evolution of multiple planets which can strongly interact
with each other as their orbits converge, leading eventually to
close encounters. During such an event, a planet may receivea
significant component of acceleration in the vertical direction,
reducing thereby the interaction with both the disc and other
planets. As a consequence, we decided here to use a model
in which planets can evolve in thez direction as well. With
respect to coplanar orbits, this will also reduce the collision
rate between planets, increasing thereby the time during which
planets can strongly interact.
In the work presented here, each planet can interact with every
other one and with the disc. The latter interaction is expected
to lead not only to orbital migration but also to eccentricity and
inclination damping. The gravitational potential of the disc is
calculating using the following expression:

Φd = −G
∫

S

Σ(r′)dr′
√

r′2 + r2
p − 2r′rp cos(φ′ − φp) + z2

p + ǫ
2

(1)

whereΣ is the disc surface density and where the integral is
performed over the disc surface.rp, φp andzp are respectively
the radial, azimuthal and vertical coordinates of thepth planet.
ǫ is a smoothing parameter which is set toǫ = 0.6H, whereH is
the local disc scale height. Under the action of this gravitational
potential, each planet undergoes both orbital migration and ec-
centricity damping. However, because of the 2D disc model we
use here, bending waves cannot be launched in the disc, and so
there is no disc induced damping of inclination. To model the
latter we follow Tanaka & Ward (2004) and mimic the effect of
bending waves by applying to each planet a vertical forceFz

given by:

Fz = β
mpΣpΩ

c4
s

(2Ac
zvz + As

zzΩ), (2)
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wherecs is the sound speed and whereΩ andΣp are respec-
tively the Keplerian angular velocity and the disc surface den-
sity at the position of the planet.Ac

z andAs
z are dimensionless

coefficients which are set toAc
z = −1.088 andAs

z = −0.871
(Tanaka & Ward 2004), andβ is a free parameter which is
chosen such that the inclination dampingti timescale obtained
in the simulations is approximatively equal to the eccentric-
ity damping timescalete. Test simulations show that choosing
β = 0.33 give similar values forti andte. We adopt therefore
this value for this work. Here, it is worthwhile to notice that ac-
cording to the linear theory (Tanaka & Ward 2004), a small
value of the planet inclination (ip ≪ H/R) is not expected
to affect the migration rate of the planet. For large values of
ip however, migration rates may be moderately slowed down
(Cresswell et al. 2007) because the interaction with the disc
is reduced. Such an effect is accounted for in an approximate
manner by Eq. 1.

2.2. Numerical setup

2.2.1. Numerical method

The simulations presented here were performed using the hy-
drodynamic code GENESIS. This code employs a second-
order-accurate method that computes advection using the
monotonic transport algorithm (Van Leer 1977). Details about
GENESIS are given in Paper I. All the runs useNr = 256 radial
grid cells uniformly distributed betweenrin = 0.5 androut = 6
andNφ = 380 azimuthal grid cells.
The evolution of the planets plus binary system is performed
using a 5th-order Runge-Kutta scheme (Press et al. 1992). In
spite of the accuracy of this integrator, experiments have shown
that to ensure energy conservation during close encounters, the
time step size∆t used to make the system evolve should be
smaller than the hydrodynamical time step∆th based on the
CFL criterion (Stone & Norman 1992). Following Cresswell
& Nelson (2006), we ensure good energy conservation and ac-
curacy by setting the time step size to∆t=min(∆th,∆tn1,∆tn2),
where:

∆tn1 =
2π
400

min
p,p′
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In the previous expressions,rpp′ is the distance between the
planetsp and p′ andrps is the distance between the planetp
and stars. We note that throughout our simulations, the time
step size is∼ 1/800 the binary orbital period.
As in Paper I, we adopt computational units in which the to-
tal mass of the binary isM∗ = 1, the gravitational constant is
G = 1, and the radiusr = 2 in the computational domain cor-

responds to 5 AU. The unit of time isΩ−1
=

√

GM∗/a3
b, where

ab = 0.4 is the initial semimajor axis of the binary. This corre-
sponds to an initial separation between the two stars of∼ 1 AU.
In the simulations presented here, close encounters between
two planets can result in a physical collision. Here, this is

supposed to occur whenever the mutual distancedpp′ between
planetsp and p′ is less than (3mp/4πρ)1/3

+ (3m′p/4πρ)1/3,
whereρ is the mass density which we assume to be the same for
each planet and equal toρ = 3 g.cm−3. If a collision is found
to occur between the planetsp and p′, these are assumed to
merge and are subsequently substituted by a single body with
massmp + m′p. The position and velocity of the latter are set to
the position and velocity of the centre of mass of the planetsp
andp′.

2.2.2. Initial conditions

As in Paper I, the disc aspect ratioH/R is assumed to be
constant and equal toH/R = 0.05. We use also the “alpha”
prescription of Shakura & Sunyaev (1973) to model the disc
anomalous kinematic viscosityν = αcsH, where cs is the
isothermal sound speed and whereα = 10−4. The reason for
choosing such a lowα value is discussed in detail in Paper I,
but is essentially because a larger value causes rapid evolution
of the binary orbit that would prohibit the long simulationswe
present here.
In Paper I, we showed that both the disc and binary evolve to-
ward a near-steady state as they interact with each other. From
the time this equilibrium configuration is reached, the apsidal
lines of the disc and binary are aligned. Also, the disc struc-
ture and the orbital elements of the binary remain essentially
constant. For example, we find that the eccentricity of a binary
with mass ratioqb = 0.1 and initial separationab = 0.4 satu-
rates at a value ofeb ∼ 0.08. The simulations presented in paper
I of one planet interacting with a circumbinary disc were per-
formed using this quasi-equilibrium state as initial conditions
for the disc and binary. Depending on the model we consider,
we adopt here a similar approach when setting up our initial
conditions:
i) In simulations of pairs of planets embedded in a circumbi-
nary disc, we restart the runs presented in Paper I once the
planet is trapped at the cavity edge but with a second planet
evolving on a circular orbit withap = 2.5 and ip = 0.5◦.
The latter is allowed to interact with the disc whose mass is
Md ∼ 0.01 M⋆ and with the other planet and binary.
ii) In simulations that evolve five-planet systems in a circumbi-
nary disc, we embed the planets in the disc once the latter and
the binary have reached a stationary state, as described in Paper
I. We set the innermost planet atap = 1.8 and then calculate
the initial location of the others by asssuming that two adjacent
bodiesp and p′ are separated by∼ 5 RmH , whereRmH is the
mutual Hill radius defined by:

RmH =

(

mp + mp′

3M⋆

)1/3 (ap + ap′

2

)

. (5)

Each body is assumed to initially evolve on a circular orbit with
ip = 0.5◦. Note that the initial separation between planets we
adopt is greater that the critical value of∼ 3.46 RmH below
which rapid instability occurs for two planets on initiallycircu-
lar orbits (Gladman 1993).
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Table 1. The first column gives the run label, the second column gives
the massmi of the inner planet and the third column gives the massmo

of the outer planet. The fourth column gives the ratioq = mi/mo.

Run mi (M⊕) mo (M⊕) q
Run1 10 10 1
Run2 10 5 2
Run3 20 10 2
Run4 20 5 4
Run5 5 10 0.5
Run6 10 20 0.5
Run7 5 20 0.25

3. Evolution of pairs of planets embedded in
circumbinary discs

In paper I we considered planets with massesmp= 5, 10 and
20 M⊕. Therefore, we adopt here the same values for the mass
mi of the innermost planet which is assumed to be trapped at
the cavity edge of the disc. For each value ofmi, we have per-
formed two or three runs for whichmo was varied between
5 ≤ mo ≤ 20 M⊕. Table 1 gives the values ofmi, mo and
q = mi/mo for each run. An interesting feature of the results
of these simulations is that varying the value ofq can lead to
different outcomes. Below, we discuss in detail the different
modes of evolution obtained in the simulations, and how they
change depending on whether or notq ≥ 1.

3.1. Models with q = 1

The orbital evolution of a pair of planets with masses ofmp =

10 M⊕ is shown in the left panel of Figure 1. At the beginning
of the simulation, corotation torques cause the inner planet to
remain trapped at the edge of the disc cavity (see Paper I) lo-
cated atr ∼ 1.2. The outer planet, which initially evolves on a
circular orbit withao = 2.5, undergoes the usual type I migra-
tion and drifts inward. As it migrates, its eccentricityeo slowly
increases due to the influence of the binary (see bottom left
panel of Figure 1). Also, the distance between the two bod-
ies becomes smaller and smaller which can potentially leads
to the formation of mean motion resonances (Papaloizou &
Szuszkiewicz 2005). Here, we find that the two planets become
captured into the 4:3 resonance att ∼ 1.9 × 104 binary or-
bits. The top right panel of Figure 1 displays the evolution of
both the apsidal angle∆ω = ωi − ωo and the resonant angle
ψ = 4λo − 3λi − 3ωi, whereλi (λo) andωi (ωo) are respec-
tively the mean longitude and longitude of pericentre of thein-
ner (outer) planet. Once the resonance is established, the libra-
tion amplitude ofψ slightly increases with time untilt ∼ 4×104

binary orbits, and then remains almost unchanged, suggesting
that the planets are stably locked into the resonance. From this
time onward, the system is close to an equilibrium state with
both planets having constant semimajor axes and eccentrici-
ties. At the end of the simulation, the ratio of semimajor axes
is ai/a0 ∼ 0.85 and the ratio of eccentricities isei/eo ∼ 0.6.
Such a configuration can be achieved because the torques ex-
erted by the disc on each planet act in an opposite way and can
eventually counterbalance each other. From the time the res-

onance is established the negative torques exerted by the disc
on the outer planet make the two planets migrate inward to-
gether. However, as both planets migrate, the innermost planet
experiences stronger positive corotation torques which tend to
push the pair of planets outward. The bottom right panel of Fig.
1 shows the evolution of the torques exerted on each planet as
well as the effective torques acting on the whole system. We see
that as the evolution proceeds, the torques exerted on the inner
planet are able to exactly counterbalance the ones exerted on
the outer body, which leads consequently to a zero net torque
acting on the system. This happens fromt ∼ 2.1× 104, thereby
stopping the joined migration of the planets.

3.2. Models with q ≥ 1

Stable resonant locking was also found in some of the calcu-
lations withq ≥ 1. Fig. 2 shows the results for Run2 in which
planets have masses ofmi = 10 andmo = 5 M⊕. With respect
to Run1, the outer planet migrates more slowly since its mass
is smaller. However, the mode of evolution found in Run2 is
very similar to the one obtained in Run1, leading ultimately
to a stable configuration with the two planets trapped in the
4:3 resonance fromt ∼ 5 × 104. At earlier times, the evolu-
tion of eo shows some peaks att ∼ 1.9× 104 andt ∼ 3 × 104

which coincide with the planets being temporary captured in
the 2:1 and 3:2 resonances. At the end of the simulation,eo is
still slightly increasing whereasei is slightly decreasing, which
indicates that the equilibrium configuration is not fully estab-
lished. Nonetheless, comparing Figs. 1 and 2, we can see that
the libration amplitude of the resonant angle is much smaller in
Run2 than in Run1, suggesting that the 4:3 resonance is more
stable in this case.
In models withmi = 20 M⊕, the simulations resulted in dif-
ferent modes of evolution, depending on the mass of the outer
planetmo. Fig. 3 and Fig. 4 display the results of calculations
with mo = 10 M⊕ andmo = 5 M⊕ respectively. Comparing
these two figures, we can see that the final state of the system
is quite similar in both cases, with planets evolving on fixed
orbits withai ∼ 1.2 andao ∼ 1.6. In the run withmo = 10 M⊕,
a 3:2 resonance forms att ∼ 1.4× 104. In the simulation with
mo = 5 M⊕ however, there is no evidence that the planets are
in mean motion resonance, even though the system is close
to the 3:2 commensurability. In this case, examination of the
torques exerted by the disc (see upper panel of Fig. 5) reveals
that the migration of the system stalls because the torques act-
ing on both planets cancel. Here, such an effect arises because
the mass of the inner planet is high enough to make the on-
set of non-linear effects possible. These can significantly alter
the surface density profile and widen the size of the inner cav-
ity. Indeed, we find that the edge of the inner cavity is located
at r ∼ 1.2 in simulations withmi = 10 M⊕ andmi = 5 M⊕
whereas the bottom panel of Fig. 5 shows that it is located at
r ∼ 1.5 in Run4. Consequently, the evolution of the system in
Run4 is such that the migration of the outermost planet is halted
at the edge of the cavity formed by the binary plus inner planet
system, therefore preventing capture in the 3:2 resonance (or in
resonances of higher degree such as 4:3).
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Fig. 1. Left: evolution of the semimajor axes (top panel) and eccentricities (bottom panel) of planets with masses ofmp = 10 M⊕. Right: the
top panel shows the evolution of both the resonant angleψ = 4λo − 3λi − 3ωi associated with the 4:3 resonance (black) and the apsidal angle
∆ω = ωi − ωo (green). The bottom panel shows the evolution of the torquesexerted by the disc on the innermost planet (red line) and on the
outermost one (yellow line). The sum (red+yellow) is displayed with the black line and corresponds to the torques exerted on the whole system.

Fig. 2. This figure shows the evolution of the semimajor axes and ec-
centricities for Run2 in which planets have masses ofmi = 10 M⊕ (red
line) andmo = 5 M⊕ (blue line). The bottom panel displays the evolu-
tion of both the resonant angleψ = 4λo − 3λi − 3ωi (black) associated
with the 4:3 resonance and the apsidal angle∆ω = ωi − ωo (green).

3.3. Models with q < 1

For simulations withq < 1, the evolution of the system dif-
fered significantly from that just described in all but one case

Fig. 3. This figure shows the evolution of the semimajor axes and ec-
centricities for Run3 in which planets have masses ofmi = 20 M⊕
(green line) andmo = 10 M⊕ (red line). The bottom panel displays
the evolution of both the resonant angleψ = 3λo − 2λi − 2ωi (black)
associated with the 3:2 resonance and the apsidal angle∆ω = ωi −ωo

(green).

(Run6). Fig. 6 shows the results of a simulation (Run5) with
q = 0.5 in which planets have masses ofmi = 5 M⊕ and
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Fig. 4. This figure shows the evolution of the semimajor axes and ec-
centricities for Run4 in which planets have masses ofmi = 20 M⊕
(green line) andmo = 5 M⊕ (blue line).

Fig. 5. The upper panel shows the evolution of the torques exerted by
the disc on the planets for Run4. The green line corresponds to the
torques exerted on the 20M⊕ planet and the blue line corresponds to
the torques exerted on the 5M⊕ planet. The lower panel displays the
azimutal average of the surface density at the time shown above the
plot as well as the position of the planets at the same time.

mo = 10 M⊕. Here, the outer planet passes through the 4:3
resonance att ∼ 1.8 × 104 and then slips into the 6:5 reso-
nance with the inner planet att ∼ 2× 104. The passage through
these resonances is clearly accompanied by an increase of the
inner planet eccentricityei. At t ∼ 2.1 × 104, the inner planet
undergoes a close encounter with the outer one as a result of
resonant trapping. This subsequently leads to the scattering of
the inner planet further out in the disc while the outer one is
pushed inward by virtue of conservation of angular momen-
tum. Interestingly, such an orbital exchange leads to a config-
uration of the system similar to that of models withq ≥ 1. In
good agreement with what we described in Section 3.2, we find

Fig. 6. This figure shows the evolution of the semimajor axes and ec-
centricities for Run5 in which planets have masses ofmi = 5 M⊕ (blue
line) andmo = 10 M⊕ (red line). The bottom panel displays the evolu-
tion of both the resonant angleψ = 6λo − 5λi − 5ωi (black) associated
with the 6:5 resonance and the apsidal angle∆ω = ωi − ωo (green).

that the final state of the system is indeed an equilibrium con-
figuration with the two planets locked into the 6:5 resonance.
At the end of the simulation, the 5M⊕ and 10M⊕ planets are
respectively located atai ∼ 1.35 andao ∼ 1.2.
Althoughq has the same value in Run6 as it is in Run5, we find
a different mode of evolution as shown in Fig. 7. In Run6 the
planets have massesmi = 10 M⊕ andmo = 20 M⊕. Relative
to Run5 the disc induced eccentricity damping acting on the
innermost planet is stronger, thereby preventing eccentricities
from reaching large values, and consequently preventing plan-
ets from undergoing close encounters. Fig. 7 shows that the
mode of evolution of the system in Run6 is almost similar to
that of models withq ≥ 1, since the planets are in resonance
(the 6:5 resonance in this case) and do not migrate. At the end
of the evolution, the innermost and outermost planets are re-
spectively located atai ∼ 1.1 andao ∼ 1.3 and the ratio of
eccentricities isei/eo ∼ 1.3.
Fig. 8 shows the results of a calculation (Run7) withmi = 5 M⊕
andmo = 20 M⊕, corresponding to a model withq = 0.25.
Here, the 20M⊕ planet enters the 4:3 resonance with the 5M⊕
body att ∼ 9× 103, which drives the eccentricity of the latter
upward. This occurs until the inner planet has a close encounter
with the binary, resulting in the planet being completely ejected
from the system. At later times, the evolution is close to that de-
scribed in Paper I, with the 20M⊕ planet migrating until it is
trapped at the edge of the cavity formed by the binary.
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Fig. 7. This figure shows the evolution of the semimajor axes and ec-
centricities for Run6 in which planets have masses ofmi = 10 M⊕
(red line) andmo = 20 M⊕ (green line). The bottom panel displays
the evolution of both the resonant angleψ = 6λo − 5λi − 5ωi (black)
associated with the 6:5 resonance and the apsidal angle∆ω = ωi −ωo

(green).

4. Evolution of five-planet systems embedded in
circumbinary discs

We now turn to the question of how a swarm of planets em-
bedded in a circumbinary disc evolves. To address this issue,
we have considered different models in which five planets hav-
ing masses of 5, 7.5, 10, 12.5 and 15M⊕ interact with each
other. Three simulations have been performed in which we var-
ied the initial configuration of the system. In one run (hereafter
Model1), the initial mass distribution of planets decreases as
one moves out in the disc, whereas it is chosen to be random in
Model2. In Model3 the initial mass distribution increases as a
function of increasing orbital radius.

4.1. Model1

In all the simulations we have performed, the innermost planet
initially evolves on a circular orbit witha1 = 1.8. For this
model the initial planetary mass distribution decreases out-
ward, so that the innermost planet has mass ofm1 = 15 M⊕.
As noted already, the planets are spaced in orbital radius as-
suming a mutual separation of 5RmH. Thus the other planets
with masses ofmp = 12.5, 10, 7.5, 5M⊕ are located initially at
ap = 2.1, 2.4, 2.8, 3.1 respectively.
Fig. 9 shows the evolution of the semimajor axes and eccentric-

Fig. 8. This figure shows the evolution of the semimajor axes and ec-
centricities for Run6 in which planets have masses ofmi = 5 M⊕ (blue
line) andmo = 20 M⊕ (green line).

ities of planets for this model. At the beginning of the simula-
tion, all the planets migrate inward as a consequence of typeI
migration, with a migration rate decreasing as one moves from
the innermost planet to the outermost one. Att ∼ 7× 103, the
innermost and most rapidly migrating 15M⊕ planet reaches
the edge of the inner cavity located atr ∼ 1.2. As expected, this
body remains trapped at this location until the inwardly migrat-
ing 12.5 M⊕ planet approaches and they enter the 4:3 resonance
at t ∼ 1.1×104. From this time the evolution of these two plan-
ets is similar to that of pairs of planets withq ≥ 1 described
in Section 3.2: the planets reach a quasi equilibrium state such
that they evolve on non migrating orbits witha1 ∼ 1.2 and
a2 ∼ 1.4, and with eccentricities remaining almost constant.
This lasts until the 10M⊕ planet enters the 4:3 resonance with
the second body att ∼ 1.5×104. Again, the third planet tends to
push the innermost planets inward, but the corotation torques
exerted on the 15M⊕ planet are able to counterbalance this
effect and the migration of this three-planet system is stalled.
A similar process occurs each time a migrating planet is reso-
nantly captured by the bodies located inside its orbit. Overtime
we find that some planets slip from one resonance to another,
but the system remains globally stable during these episodes.
For example, the fifth planet with massm5 = 5 M⊕ slips from
the 4:3 resonance with the 7.5 M⊕ planet to the 5:4 resonance at
t ∼ 4.5×104 and finally enters the 6:5 resonance att ∼ 5.2×104.
The final outcome of the simulation is a system forming a se-
ries of resonances between adjacent bodies with each of them
evolving on a non migrating orbit.

Fig.10 displays the resonant anglesψ1 = (p+1)λo−pλi−ωi

andψ2 = (p + 1)λo − pλi − ωo corresponding to the (p + 1) :
p commensurabilities that form between each pair of adja-
cent bodies. We see that all commensurabilities that form are
first order resonances, in agreement with results obtained by
Cresswell & Nelson (2006). This simulation suggests that in
a circumbinary disc, corotation torques exerted at the edgeof
the inner cavity provide an efficient mechanism against type
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Fig. 9. This figure shows the evolution of the semimajor axes and ec-
centricities of planets for Model1. Moving from the innermost planet
to the outermost one, planets have masses of 15 (black line),12.5 (red
line), 10 (green line), 7.5 (blue line) and 5M⊕ (yellow line).

I migration for a swarm of planets, and that resonant capture
prevents close encounters, scattering and collisions whenthe
initial planetary mass distribution decreases as a function of
orbital radius.

4.2. Model2

In this model, the initial configuration of the system is suchthat
moving from the innermost planet to the outermost one, planets
have masses ofmp = 15, 7.5, 12.5, 5 and 10M⊕ respectively.
A snapshost of the disc surface density at the beginning of the
simulation is presented in the left panel of Fig. 12 and the evo-
lution of the semimajor axes and eccentricities of planets for
this model is illustrated in Fig. 11. Once again, the innermost
15 M⊕ planet rapidly drifts toward the edge of the inner cavity
where it remains trapped. In comparison with Model1, adja-
cent bodies have significantly different masses which leads to
a stronger diffential migration between them. This causes the
12.5 M⊕ and 10M⊕ planets to rapidly catch up with the 7.5
M⊕ and 5M⊕ planets respectively, leading to the formation of
resonances. Here, the 12.5M⊕ planet first enters the 6:5 res-
onance with the 7.5M⊕ body and then slips into the 7:6 res-
onance. Fig. 11 shows that the excitation of eccentricitiesdue
to this resonant interaction, and the influence of surrounding
planets, leads ultimately to a collision between these two bod-
ies att ∼ 1.7× 104. This merger forms a 20M⊕ planet, which
then migrates inward until it becomes locked stably into the
5:4 resonance with the 15M⊕ planet. Att ∼ 3× 104 a new col-
lision occurs between the 5 and 10M⊕ planets. Earlier, these
two planets passed through a sequence of different resonances
and were in the 7:6 resonance just before this collision occured.
Again, this newly formed 15M⊕ planet migrates until it catches
with the 20M⊕ body.

The right panel of Fig. 12 shows a snapshot of the disc sur-
face density at the end of the simulation. We see that the final

Fig. 11. This figure shows the evolution of the semimajor axes and ec-
centricities of planets for Model2. Moving from the innermost planet
to the outermost one, planets have masses of 15 (black line),7.5 (red
line), 12.5 (green line), 5 (blue line) and 10M⊕ (yellow line).

state of the system consists of only three bodies evolving in
the disc. Moving from the innermost planet to the outermost
one, these have masses of 15, 20 and 15M⊕. Once again, the
corotation torques exerted at the cavity edge prevent inward
migration, leaving each surviving body in resonance with its
neighbours. Fig. 13 displays the resonant angles corresponding
to the commensurabilities that form between each pair. These
are the 5:4 resonance for the first pair and the 4:3 resonance
for the second one. This is in good agreement with the simula-
tions performed by Cresswell & Nelson (2006) who studied the
evolution of a swarm of planets embedded in a protoplanetary
disc, and who found that the 4:3, 5:4, 6:5 and 7:6 resonances
are most favoured.

4.3. Model3

In this last model, we consider planets with massesmp = 5, 7.5,
10, 12.5 and 15M⊕ located initially atap = 1.8, 2, 2.3, 2.7 and
3.1 respectively.
The evolution of the semimajor axes and eccentricities of plan-
ets for Model3 are shown in Fig. 14. At the beginning of the
simulation, each planet migrates inward, but the initial configu-
ration of this model is such that the orbits of two adjacent bod-
ies rapidly converge, leading to the formation of resonances.
At t ∼ 3 × 103, the system has already evolved to a state
where each body is in resonance with its closest neighbours,
which occurs here before the innermost planet reaches the in-
ner cavity. Moving from the inner planet to the outer one, the
commensurabilities that form are respectively the 7:6, 6:5, 6:5
and 5:4 resonances. The resonant interaction between the 5 and
7.5 M⊕ planets increases their eccentricities up toep ∼ 0.08.
Eccentricity growth within the swarm leads to crossing orbits,
and subsequent interactions cause the breaking of resonances.
This leads to a collison between the 5 and 7.5M⊕ planets at
t ∼ 1.8×104. At t ∼ 2.4×104 a collision resulting in a 22.5M⊕
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Fig. 10. This figure shows the resonances which are established between adjacent bodies at the end of the simulation corresponding to Model1.
Planets are labelled from 1 to 5, with 1 being the innermost planet and 5 being the outermost one.

Fig. 12. This figure shows, for Model2, snapshots of the disc surface density at times shown above the plots. In this figure, planetsare represented
by white circles.

planet also occurs between the 10 and 12.5M⊕ bodies which
were locked into the 7:6 resonance prior to this event.

The final state of the system consists of three planets with
masses ofmp = 12.5, 22.5 and 15M⊕ respectively located at
ap = 1.1, 1.3 and 1.5. The upper panel of Fig. 15 shows that
the 5:4 resonance is clearly established between the first pair of

planets. At the end of the simulation, these two bodies evolve
on non migrating orbits, whereas the outermost body migrates
outward very slightly, indicating that the latter is not in reso-
nance with its interior neighbour. The disc surface densitypro-
file at t ∼ 4 × 104 is displayed in the bottom panel of Fig. 15.
It shows that the outermost planet is located in a region where
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Fig. 13. This figure shows the resonances which are established between adjacent bodies at the end of the simulation corresponding to Model2.
Planets are labelled from 1 to 5, with 1 being the innermost planet and 5 being the outermost one.

Fig. 14. This figure shows the evolution of the semimajor axes and ec-
centricities of planets for Model3. Moving from the innermost planet
to the outermost one, planets have masses of 5 (black line), 7.5 (red
line), 10 (green line), 12.5 (blue line) and 15M⊕ (yellow line).

the disc has a large positive surface density gradient, close to
the outer edge of the partial gap formed by the 22.5M⊕ body.
This results in large positive corotation torques, leadingto the
observed outward migration of the outermost planet. This pro-
cess is likely to operate until the planet reaches a fixed point
located near the gap edge, where the total torque (corotation
plus Lindblad) cancels (Masset et al. 2006). This result is con-
sistent with that found in Section 3.2 where the inner and outer
planet masses were 20 and 5M⊕, respectively.

4.4. Long term evolution

We now turn to the question of the long-term evolution of
the planetary systems obtained in the five-planet simulations.
Because the interaction with the gas disc tends to damp ec-
centricities, it is necessary to examine the dynamical stability
of the planets after the disc dispersal to establish long term
stability. Each of the previous simulations was restarted at a
point corresponding to the end of the run, but with the gas

Fig. 15. The upper panel shows, for Model3, the resonant anglesψ1

(black) andψ2 (green) associated with the resonance that forms be-
tween the two innermost planets. The bottom panel displays the disc
surface density profile at the time shown above the plot. The semima-
jor axes of the planets at that time are represented by black circles.

surface density decaying exponentially with an e–folding time
tdec = 2 × 103. Once these systems had evolved for∼ 104 bi-
nary orbits, by which time the surface density in the discs had
decreased by a factor of∼ 103, we continued the simulations
with a pure N-body code, ignoring any residual effects of the
remaining gas. For each of the five-planet models the resultsof
this procedure are presented in Fig. 9, which displays the time
evolution of the orbital radii of the planets.

In Model1, the eccentricity growth resulting from the disc
dispersal gives rise, at the beginning of the simulation, tonu-
merous scattering events that eventually lead to collisions. At
time t ∼ 8× 104 a system of two planets with masses of 27.5
and 22.5M⊕ remains, but these merge att ∼ 1.1×105. The final
state of the system is then a 50M⊕ planet orbiting atr ∼ 1.5.

A similar outcome is obtained in Model3 in which the long-
term evolution resulted in a 15M⊕ planet evolving in a high-
eccentricity orbit with a semi-major axis ofap ∼ 2. At earlier
times, the increase in eccentricities following disc dispersal led
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Fig. 16. This figure shows time evolution of the orbital radii of the
planets for Model1, Model2 and Model3 as a consequence of thedisc
dispersal. It corresponds to the results of hydro plus N-body simula-
tions (see text for details).

to a collision between the 12.5 and 22.5M⊕ bodies, thereby
forming a new 35M⊕ planet. At t ∼ 2 × 105, the latter is
observed to undergo a close encounter with the cental binary,
leading to this body being completely ejected from the system.
Interestingly, the three-planet system in Model2 appears to
be dynamically stable over long time scales, with the plan-
ets maintaining their commensurabilities. This indicatesthat
multiplanet resonant systems could potentially be found incir-
cumbinary discs, where the existence of the resonance helpsto
maintain the stability of the system.

5. Summary and conclusion

In this paper we have presented the results of hydrodynamic
simulations aimed at studying the evolution of multiple planets
embedded in a circumbinary disc.
We first focused on a system consisting of a pair of planets in-
teracting with each other. We assumed that one body is trapped
at the edge of the inner cavity formed by the binary, while the
other migrates inward from outside the orbit of the innermost
body. Our calculations show different outcomes, depending on
the planet mass ratioq = mi/mo.
i) For models withq = 1, the simulations indicate that the sys-
tem evolves toward a quasi equilibrium state with both plan-
ets trapped in a mean motion resonance and evolving on non
migrating orbits. This occurs because the positive corotation
torques exerted on the innermost planet counterbalance the

negative corotation torques exerted on the outermost one.
ii) For models withq ≥ 1, most of the runs resulted in a similar
mode of evolution. Occasionally however, the final fate of the
sytem was such that the two bodies are in close vicinity to one
another, have stopped migrating, but are not in resonance. This
arises when the mass of the innermost planet is high enough
to open a partial gap in the disc, such that the migration of the
outer planet is stopped at the edge of the large cavity formed
by both the binary and the innermost planet.
iii) For most of the models withq < 1, the planets involved in
the simulations underwent different dynamical processes such
as scattering or orbital exchange. When orbital exchange oc-
curs, the final state of the system is a stable mean motion res-
onance with the more massive planet now being the innermost
one. Scattering and orbital exchange occurs once a first order
resonance is established between the planets. This drives up
the eccentricity of the inner planet leading to a close encounter
with either the outer planet or the binary. A close encounter
with the binary leads to ejection.

Having examined the two-planet problem, we then focused
on more “realistic” systems composed of five planets with
masses of 5, 7.5, 10, 12.5 and 15M⊕ embedded in a circumbi-
nary disc. We performed three simulations, with the planetsbe-
ing placed in different initial orbital configurations.

In general terms, the evolution of such a system proceeds
as follows. Each planet migrates inward until it is capturedinto
resonance with an adjacent body. This occurs either because
the innermost planet has reached the edge of the inner cav-
ity, where it remains trapped, or because two adjacent bodies
migrate differentially. In some simulations, resonant interac-
tion and the associated eccentricity growth resulted in close
encounters and collisions between bodies, resulting in thefor-
mation of a more massive planet. At later times, once the more
chaotic phase of evolution is over, the system behaves more
quiescently, and generally reaches a stationary state witheach
remaining body in resonance with its closest neighbours on non
migrating orbits due to planet trapping at the cavity edge. In
two of the three simulations, we found that disc dispersal led
to strong scattering and collisions between bodies, resulting in
eventually only one planet being left in the system. In the re-
maining case, we found that three planets could exist stablyin
a three body mean motion resonance over very long times.

The results of our simulations indicate that resonant sys-
tems of planets with masses in the∼ few–Earth mass range
may be common in close binary systems. Indeed, the inner edge
of a circumbinary disc plays the role of a barrier, which raises
the possibility that two bodies become resonantly trapped.This
resonance trapping, however, usually prevents the two planets
from approaching each other so that they are unable to merge
to form a larger body. When more than two bodies are intro-
duced we found that the resulting scattering and close encoun-
ters could lead to planetary growth, however, but we have been
unable to run sufficient numbers of simulations to provide reli-
able statistical information about the range of outcomes.

A number of outstanding issues remain when considering
planet formation in circumbinary discs. The first is understand-
ing where the planetary cores can form due to planetesimal ac-
cretion. The formation of an eccentric disc around a binary sys-
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tem, and the presence of the binary itself, can increase the ve-
locity dispersion to a value where accretion does not occur ex-
cept far out in the disc. The second is understanding the growth
of cores once they have formed, either through continued plan-
etesimal accretion, or through giant impacts. The migration of
the core toward the inner cavity may actually place it in a re-
gion where planetesimal accretion is reduced due to increased
velocity dispersion, and at present there have been no simula-
tions of giant impact growth which include the gas disc. If a
giant core can be formed, however, then it is likely that a gas
giant planet will result. As it grows, a giant planet should leave
the edge of the cavity and undergo type II migration (e.g. Lin&
Papaloizou 1993; Nelson & al. 2000), until it becomes trapped
into the 4:1 resonance with the binary. This appears to be the
most likely fate of a giant planet migrating in a circumbinary
disc (Nelson 2003), although trapping is not necessarily perma-
nent and simulations indicate a finite probablity of the planet
being ejected from the system due to close encounters with the
binary. The evolution of the planet during its growth from a
core into a gas giant, however, has not been explored, and this
will be the subject of a future paper.
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