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ABSTRACT

Context. Protostellar accretion discs have cool, dense midplanes where externally originating ionisation sources such as X–rays
or cosmic rays are unable to penetrate. This suggests that for a wide range of radii, MHD turbulence can only be sustained in
the surface layers where the ionisation fraction is sufficiently high. A dead zone is expected to exist near the midplane, such
that active accretion only occurs near the upper and lower disc surfaces. Recent work, however, suggests that under suitable
conditions the dead zone may be enlivened by turbulent transport of ions from the surface layers into the dense interior.
Aims. In this paper we present a suite of simulations that examine where, and under which conditions, a dead zone can be
enlivened by turbulent mixing.
Methods. We use three–dimensional, multifluid shearing box MHD simulations, which include vertical stratification, ionisation
chemistry, ohmic resistivity, and ionisation due to X–rays from the central protostar. We compare the results of the MHD
simulations with a simple reaction–diffusion model.
Results. The simulations show that in the absence of gas-phase heavy metals, such as magnesium, turbulent mixing has essentially
no effect on the dead zone. The addition of a relatively low abundance of magnesium, however, increases the recombination
time and allows turbulent mixing of ions to enliven the dead zone completely beyond a distance of 5 AU from the central star,
for our particular disc model.
Conclusions. During the late stages of protoplanetary disc evolution, when small grains have been depleted and the disc surface
density has decreased below its high initial value, the structure of the dead zone may be significantly altered by the action of
turbulent transport. This may have important consequences for ongoing planet formation in these discs.
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1. Introduction

Observations of young stars in a broad variety of star
forming environments show that they are surrounded by
gaseous and dusty circumstellar discs (e.g. Beckwith &
Sargeant 1996; O’Dell et al. 1993; Prosser et al 1994;
Furlan et al. 2006). These systems usually show signatures
of active gas accretion onto the central star with a range of
mass flow rates, but with the typical value being ' 10−8

M� yr−1 (e.g. Sicilia–Aguilar et al. 2004). The mechanism
by which the disc transports angular momentum inter-
nally to cause accretion is not yet fully understood, but is
likely to have its origin in disc turbulence. So far only one
mechanism has been shown to be robust in generating
turbulence in Keplerian discs, namely the magnetorota-
tion instability (MRI) (Balbus & Hawley 1991; Hawley &
Balbus 1991). In addition to providing the internal stress
required for accretion, turbulence may also have impor-
tant consequences for planet formation and evolution in
protoplanetary discs. It will lead to mixing of the dust, and

may prevent settling toward the midplane (Carballido et
al. 2005; Johansen & Klahr 2005; Fromang & Papaloizou
2006). It will also cause an increase in planetesimal veloc-
ity dispersion, and may prevent runaway growth of plan-
etesimals into planetary embryos (Nelson 2005). It will
modify the migration of low mass protoplanets (Nelson &
Papaloizou 2004; Nelson 2005), and will provide the effec-
tive viscous stress in the disc needed to drive the so–called
type II migration of giant planets (Nelson & Papaloizou
2003). It has recently been suggested that it may lead to
planetesimal formation through gravitational instability
(Johansen et al. 2007).

There are continuing questions, however, about the ap-
plicability of the MRI to cool, dense protostellar discs,
as the ionisation fraction is expected to be low (Blaes
& Balbus 1994). A protostellar disc model has been pre-
sented by Gammie (1996) in which the main source of
ionisation is Galactic cosmic rays. Such a disc is predicted
to have magnetically “active zones” near the disc surface
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in which turbulence is sustained by the MRI due to cos-
mic ray ionisation, but with a “dead zone” near the disc
midplane where cosmic rays are unable to penetrate. Sano
et al. (2000) have examined the effects of a more complex
chemical reaction network and the influence of small dust
grains. Glassgold et al. (1997) and Igea & Glassgold (1999)
examined X–rays emitted by the protostellar corona as a
possible source of disc ionisation, since it is doubtful that
cosmic rays can penetrate the inner disc regions because
of the attenuating effect of the T Tauri wind. Fromang et
al. (2002) demonstrated the potential importance of gas
phase heavy metals such as magnesium, whose presence
in trace quantities can significantly increase the recom-
bination time and decrease the size of the dead zone (at
least in a dust free disc). Semenov et al. (2004) examined
the disc chemistry and ionisation fraction using a reaction
network drawn from the UMIST database, and analysed
results using a reduced reaction network.

Nonlinear numerical studies of the effects of ohmic re-
sistivity on MRI–driven MHD turbulence have also been
presented. Fleming et al. (2000) performed MHD simu-
lations of resistive discs, and showed that turbulence is
not sustained in discs with a magnetic Reynolds num-
ber Rem which is below a critical value Recrit

m . Fleming &
Stone (2003) performed simulations where resistivity de-
creased as a function of height in the disc, as predicted by
the Gammie (1996) model, and showed that active zones
could indeed coexist with dead zones in the disc. They
also showed that a low Reynolds stress can be maintained
in the dead zone, such that low levels of accretion are sus-
tained there. A recent study of resistive discs has also been
presented by Turner et al. (2007), who presented stratified
shearing box simulations of discs in which resistivity var-
ied with height, and a multifluid simulation in which disc
chemistry was evolved along with the dynamics. This lat-
ter run showed that turbulent mixing can potentially have
an important effect in generating stresses in the dead zone.
Fromang & Papaloizou (2007) have recently performed a
resolution study of shearing box simulations, and showed
that the level of turbulent activity reduces as the resolu-
tion increases. An analysis of exiting shearing box simu-
lations in the literature by Pessah et al. (2007) led to a
similar conclusion. In a companion paper to Fromang &
Papaloizou (2007), Fromang et al. (2007) also examined
how turbulent activity scales with magnetic Prandtl num-
ber (defined by Pm = Rem/Re where Re is the Reynolds
number and Rem is the magnetic Reynolds number). They
showed that both the Reynolds number and magnetic
Prandtl number are the parameters that control the level
of turbulent activity in a disc, with Pm ≤ 1 flows showing
no sustained turbulent activity for zero net flux magnetic
fields. Clearly there is much work to be done in under-
standing the nature of MHD turbulence in discs.

In a recent set of publications, we have undertaken
an extensive study of the chemistry and ionisation frac-
tion in protoplanetary discs. In Ilgner & Nelson (2006a)
(hereafter paper I) we examined the dead zone structure
in standard α–disc models as predicted by a number of

different chemical reaction networks, and showed that the
simple model of Oppenheimer & Dalgarno (1974) gives
good agreement with more complex models based on the
UMIST database (Le Teuff et al. 2000). We also demon-
strated that grain depletion by factors even lower than
10−6 are required to reduce significantly the sizes of dead
zones. In Ilgner & Nelson (2006b) (hereafter paper II)
we constructed a reaction–diffusion model to examine the
role of turbulent mixing on dead zone structure. The re-
sults showed that turbulent mixing has essentially no ef-
fect throughout the disc in the absence of gas phase heavy
metals such as magnesium. In the presence of trace quan-
tities of magnesium, however, turbulent mixing was able
to enliven the dead zone out beyond a few AU, where the
mixing time becomes shorter than the recombination time.
In a third paper of the series (Ilgner & Nelson 2006c), we
examined the effect of X–ray flares on dead zone structure.

In this paper we present a suite of shearing box sim-
ulations of stratified local disc models in which we evolve
the disc chemistry along with the magnetohydrodynamic
equations. The primary aim is to re–examine the results of
paper II using multifluid MHD simulations, and determine
whether, and under what conditions, turbulent mixing can
enliven a dead zone by mixing ions from the surface layers
down toward the midplane. We use the simple reaction
scheme of Oppenheimer & Dalgarno (1974), which we in-
corporate into a multifluid MHD code, and assume that
dust grains are absent and ionisation is caused primarily
by X–rays from the central star. We examine the effects
of mixing as a function of gas phase magnesium abun-
dance and distance from the central star. Our results are
in very good agreement with the predictions of paper II.
Disc models which contain no gas phase magnesium show
that the dead zone structure is essentially unmodified by
turbulent mixing. In the presence of magnesium, however,
our simulations show that the dead zone can be enlivened
completely beyond a distance of 5 AU from the central
star.

The paper is organised as follows. In Sect. 2 we present
the basic equations and the chemical reaction network
that we solve. In Sect. 3 we discuss the reaction–diffusion
model, which we use to compare with the MHD simula-
tions. In Sect. 4 we discuss the method used for calculating
the X–ray ionisation rate, and in Sect. 5 we discuss previ-
ous simulations that have examined dead zone structure.
In Sect. 6 we present our simulation results, and finally in
Sect. 7 we draw our conclusions.

2. The dynamical and chemical model

In this section we give a detailed description of the chem-
ical model used in our simulations, and present the mul-
tifluid MHD equations that we solve.

2.1. Chemical model

For the purposes of simplicity and computational
tractability, we have applied the simple kinetic model
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Table 1. Rate coefficients for the Oppenheimer & Dalgarno
model.

ζ̃ ζeff s−1

α̃ 3 × 10−6/
√

T cm3 s−1

β̃ 3 × 10−9 cm3 s−1

γ̃ 3 × 10−11/
√

T cm3 s−1

of Oppenheimer & Dalgarno (1974) to evolve the gas-
phase chemistry within the simulations. This reaction
network has been described in Ilgner & Nelson (2006a),
where it was compared with more complex reaction net-
works and found to predict electron fractions that were
slightly higher on average, due to the lower number of
molecular ion species present in the simpler model. The
Oppenheimer & Dalgarno reaction network may be writ-
ten:

H2 + hν → H+
2 + e− (1)

H+
2 + e− → H2 (2)

H+
2 + Mg → H2 + Mg+ (3)

Mg+ + e− → Mg + hν (4)

This reaction scheme involves five species: molecular hy-
drogen and its ionised counterpart (which act as a repre-
sentative molecule and molecular ion), atomic magnesium
and its singly ionised counterpart (which act as represen-
tative heavy metal and metal ion), and free electrons. The
free electrons are treated as a dependent species and their
local fractional abundance is calculated assuming local
charge neutrality: x[e−] = x[H+

2 ] + x[Mg+]. In our model,
Eqns. (1) – (4) represent ionisation of H2 by X–rays, re-
combination of H+

2 , charge transfer between H+
2 and Mg,

and recombination of Mg+, respectively. The associated
reaction rates are given in table 1, with the rate coeffi-
cients being denoted by ζ̃ , α̃, β̃, γ̃, respectively. The re-
combination rate of Mg+ is five orders of magnitude lower
than of H2

+, indicating that a magnesium–abundant gas
will sustain a higher ionisation fraction than a metal–poor
one because of charge transfer reactions, a point already
noted by Fromang et al. (2002) in the context of proto-
stellar discs.

Eqns. (1) – (4) form a set of stiff coupled ordinary dif-
ferential equations, and we use the Gear method for their
solution at each point in the simulation domain and for
each simulation time step. The major source of ionisation
that we consider is X–rays from the central protostar, and
our approach to calculating the ionisation rate is described
below in Sect. 4.

2.2. Multifluid MHD equations

As the mean–free path for collisions, and the ion gyro–
radii, are very much smaller than the length scales we
consider in our calculations, we adopt a multifluid MHD

approach to incorporating chemical evolution of the gas
during the dynamical evolution of our disc models. We
use the shearing box representation of a local patch of
the protostellar disc (Goldreich & Lynden-Bell 1965), in
which the fluid is described using Cartesian coordinates
(x, y, z). The origin of this coordinate system rotates
with the local Keplerian angular velocity, Ω, and the x
coordinate represents the radial direction, the y coordi-
nate the azimuthal direction, and z the vertical direction.
The standard shearing box equations for MHD, including
ohmic resistivity, are:

∂%

∂t
+ ∇· (%v) = 0.

∂v

∂t
+ v · ∇v = −2Ωẑ× v + 3Ω2xx̂ (5)

−
1

%
∇P −

1

%c
J ×B− Ω2zẑ

∂B

∂t
= ∇× (v×B − η∇×B) (6)

The expressions above represent the continuity, momen-
tum and induction equation, respectively. % represents the
gas density, v the velocity, P the pressure, B the magnetic
field, J the current density, and Ω is the local Keplerian
angular velocity. The resistivity is denoted by η.

In our scheme the five species are treated as indivdual
but tightly coupled fluids which move with the bulk veloc-
ity v, and so we must solve a continuity equation for each
of them. When combined with the possibility that the lo-
cal abundance of species may change because of chemical
evolution as well as advection, then the continuity equa-
tion for each species i may be written:

∂%i

∂t
+ ∇· (%iv) = mi

r
∑

j=1

νijJj with i = 1, . . . , n (7)

where mi is the particle mass for species i, Jj denotes the
chemical reaction rate associated with the jth chemical
reaction, while νijJj is the formation/destruction rate of
the ith fluid component due to the jth chemical reaction.
We assume an isothermal equation of state such that

P = c2
s% (8)

and calculate the resistivity according to (Blaes & Balbus
1994)

η =
234

x[e−]
T 1/2. (9)

The thermal structure of the disc model we use is de-
scribed in the next section.

2.3. Disc model

The MHD simulations that we performed were calculated
using a system of dimensionless variables, as is convenient
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when performing shearing box simulations. In order to
evolve the chemistry, however, whose reaction rates de-
pend on local temperature and density, we need to ascribe
physical units to these simulated quantities. We assume
that the central star is of solar mass, and we adopt a disc
model for which the surface density varies according to
Σ = 1000 [R/1 AU]−3/2 gcm−2, and where the volume
density varies with disc height as a Gaussian:

%(z) ∝ exp

{

−
1

2

( z

H

)2
}

. (10)

We assume that the disc aspect ratio has a constant value
H/r = 0.05, and that the sound speed cs = HΩ. The tem-
perature is then related to the local sound speed according
to c2

s = RT/µ, where the mean molecular weight is as-
sumed to be µ = 2.33. The local physical parameters for
each shearing box simulation are then fully specified once
the orbital radius, magnetic field, chemical abundances
and the local ionisation rate are defined.

2.4. Numerical method

We use the ZEUS finite difference MHD code (Stone &
Norman 1992), modified to allow for the treatment of an
arbitrary number of coupled fluids, to perform all our sim-
ulations. Time step control was achieved using the stan-
dard Courant condition, with the Courant number set to
0.5. As the simulations use explicit time stepping, the time
step size is also determined by the ohmic diffusion rate of
the magnetic field. The chemical kinetic equations were
evolved using the Gear method.

2.5. Initial and boundary conditions

The basic disc model used is described in Sect. 2.3. The ini-
tial velocities of the gas in the simulations were taken to be
the shearing box equilibrium values v = (0,−3/2 · Ωx, 0),
but with random fluctuations imposed with maximum
amplitude equal to 10−3 of the sound speed. The initial
magnetic field is a zero net flux vertical field given by
Bz = B0 sin(2πx/H), where B0 is defined by the require-
ment for the volume averaged plasma parameter β = 100.

At the beginning of each shearing box simulation,
the equilibrium particle concentrations x∞[Y ] of species
Y ∈ {Mg, Mg+, H2, H

+
2 } are taken as initial abundances.

Note that we use different concentrations of magnesium
for our models, and we simulate local patches of the disc
at different radii from the central star. In each case we cal-
culate the local equilibrium chemistry prior to initiating
the MHD simulations.

We use the same computational set-up as Fromang &
Papaloizou (2006). The computational domain is given by
[−H/2, H/2], [0, 2πH ], and [−3H, 3H ] in x, y, and z. We
use a grid resolution of 32 × 100 × 192. Standard peri-
odic boundary conditions apply in y and z, while periodic
boundary conditions in shearing coordinates are used for
x. For a detailed description of the shearing box set up
and boundary conditions see Hawley, Gammie & Balbus

(1995). Following Fromang & Papaloizou (2006) we intro-
duced a vertical length scale H0 = 2.4 H which is used
to prevent unphysical fluctuations due to the non vanish-
ing vertical component of the gravitational force at the z
boundary. By applying Eq. (30) of Fromang & Papaloizou
(2006) we ensure that the vertical gravity acts on vertical
length scales L < H0 only.

3. Reaction–diffusion model

In paper II we calculated the ionisation fraction for con-
ventional α–disc models and examined the effect of turbu-
lent mixing by modelling the diffusion of chemical species
vertically through the disc. To recap: applying a one di-
mensional reaction–diffusion model, we assumed that ver-
tical mixing arises because of turbulent diffusion, and
adopted the approximation D = νt using the α prescrip-
tion to calculate νt. Here νt is the (turbulent) kinematic
viscosity that drives the radial diffusion of mass through
the protostellar disc, and D denotes the vertical diffusion
coefficient.

Instead of just mimicking the effects of turbulent mix-
ing in this way, we now model the turbulent transport of
chemical species by solving the corresponding non-ideal
MHD equations in a three dimensional shearing box as
discussed above. The mixing now is a direct outcome of
the MHD turbulence.

One purpose of this paper, however, is to examine
whether or not the effects of turbulent mixing on the ioni-
sation fraction described in paper II, can also be observed
in shearing box simulations when MHD turbulence oper-
ates. Hence, we calculated the ionistion fraction obtained
for the kinetic model of Oppenheimer & Dalgarno by ap-
plying the reaction–diffusion model at the corresponding
cylindrical radius R, in order to aid a direct comparison
between the results obtained for the reaction–diffusion and
the shearing box model. We have good reason to make
this comparison because Balbus & Papaloizou (1999) have
shown that the mean flow dynamics of the MHD turbu-
lence follows the α prescription.

For the reaction-diffusion model we assume the same
vertical density profile we use for the shearing box simu-
lation at t = 0. The same applies for the gas temperature.
We further adopt the approximation D = νm with

νm = αmc2
s/Ω. (11)

where αm is a dimensionless number used to quantify the
efficiency of vertical mixing of chemical species by the
turbulence. A range of αm values are used to examine
how the reaction–diffusion model matches the simulations.

Since we expect the largest gradients in the electron
fraction to be in vertical (z) direction, we consider only
vertical diffusion in the reaction–diffusion model. The rate
of change of the molar density of the ith component of the
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fluid within a given volume due to chemical reactions and
diffusion caused by concentration gradients is

∂ni

∂t
=

∂

∂z

(

nD
∂

∂z
xi

)

+

r
∑

j=1

νijJj , (i = 1, . . . , s) (12)

where ni denotes the molar density of the ith component,
D the diffusion coefficient, xi = ni/n the fractional abun-
dance of species i, and n =

∑

i ni. Jj denotes the chemical
reaction rate associated with the jth chemical reaction,
while νijJj is the formation/destruction rate of the ith
component due to the jth chemical reaction. A detailed
discussion of the derivation of Eq. (12) is presented in pa-
per II. (2006b).

The numerical method applied to solve the reaction–
diffusion model is described in paper II, and the
same boundary conditions apply. The boundaries are at
[0, +3H ] such that the computational domain has size
Lz = 3H ; the number of grid cells is Lz/∆z = 60, en-
suring that the elements and charge are conserved to high
accuracy.

For a given metal elemental abundance, the reaction–
diffusion models are initiated with the equilibrium com-
position obtained for D = 0, exactly as they are for the
shearing box simulations.

4. X-ray ionisation rate

As in paper I, we assumed that the ionisation of the disc
material arises because of incident X-rays that originate in
the corona of the central T Tauri star. We neglect contri-
butions from Galactic cosmic rays as it remains uncertain
whether they can penetrate into the inner disc regions we
consider due to the stellar wind. The details for determin-
ing the effective ionisation rate ζeff have been described
in paper I. However, here we do not consider standard α-
disc models as we did in that paper. Instead, we adopted
a locally isothermal disc with the same Gaussian verti-
cal profile for the mass density used for the local shearing
box model at t = 0. When calculating the X-ray ionisation
rate we assumed that this density profile did not vary with
time, an assumption that is confirmed by the shearing box
simulations which show that the density profile closely fol-
lows its initial Gaussian profile throughout the nonlinear
evolution of the MRI, (see top right panel of Fig. 3).

We adopted values LX = 1031 erg s−1 and kBTX =
5 keV for the total X-ray luminosity LX and the plasma
temperature TX, respectively. Compared with the val-
ues applied in Ilgner & Nelson (2006a,b), (i.e. LX =
1030 erg s−1 and kBTX = 3 keV), the X-ray source consid-
ered here is more both harder and more luminous in order
to increase the ionisation fraction above a theshold which
makes the shearing box simulations feasible (a low ioni-
sation fraction leads to a small time step size). However,
the new values are still consistent with the observational
constraints (e.g. Favata et al. 2005; Wolk et al. 2005).

The effective ionisation rate (per hydrogen nucleus)
ζeff is approximated by Eq. (3) in paper I. Calculating the

Fig. 1. The effective X–ray ionisation rate ζeff per hydrogen
nucleus. The contour lines refer to values of ζeff : 10−15, 10−17,
and 10−19 s−1.

Fig. 2. Vertical profiles of the magnetic Reynolds numbers
Rem. The profile drawn with the solid line refers to the profile
used by Fleming & Stone (2003) in their model with a small
dead zone. The two dashed lines correspond to profiles used by
Turner et al. (2007) in their models F1 and F56. The profile
drawn with the dotted line refers to our model1, calculated at
R = 10 AU and a metal abundance of xMg = 5×10−11. Details
are discussed in the text.

X-ray optical depth τX along the line of sight between the
X-ray source and the point in question, we derived the
effective ionisation rate shown in Fig. 1. In particular, we
applied the same data range in order to aid direct com-
parison with the ionisation rates of our previous α-disc
models (e.g. compare with Fig. 6 of paper I). The effec-
tive ionisation rate shown in Fig. 1 is higher because of
the brighter (by one order of magnitude) and harder (more
penetrating) X-ray source applied.

5. Previous simulations of dead zones

As has been well documented in the literature, there re-
main questions about the applicability of the MRI to pro-
tostellar discs because of their high densities and low tem-
peratures, which lead to low levels of ionisation (e.g. Blaes
& Balbus 1994; Gammie 1996). The first fully non lin-
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ear study of the MRI including the effects of resistivity
were performed by Fleming et al. (2000), who employed
shearing box simulations to examine the conditions under
which fully developed turbulence could be sustained. They
showed that the important quantity that determines the
outcome is the magnetic Reynolds number, Rem, defined
by:

Rem =
Hcs

η
(13)

where the resistivity, η, is defined by Eq. (9). Simulations
showed that turbulence could only be sustained if the
Reynolds number was greater than a critical value, Recrit

m ,
where this critical value depends on the magnetic field
topology. For zero net flux fields Recrit

m ' 104, whereas
for net vertical fields Recrit

m ' 100. The implication of this
study is that protostellar discs, in which the magnetic field
is an internally generated zero net flux field, will sustain
turbulence in their surface regions where the ionisation de-
gree causes Rem

>∼ 104, but will remain in a near–laminar
state in regions near the midplane, as envisaged by the
layered disc model of Gammie (1996).

Shearing box simulations of stratified protostellar
discs, with resistivity varying with height, were presented
by Fleming & Stone (2003). Calculations were presented
with different vertical resistivity and magnetic Reynolds
number profiles, and it was shown that layered accretion
resulted when the magnetic Reynolds number satisfied
Rem > Recrit

m in the surface layers, with Rem < Recrit
m in

the midplane regions. Their results also showed that a low
Reynolds stress could be sustained in the dead zones due
to the penetration of sound waves excited in the overly-
ing active regions. The magnetic Reynolds number profile
assumed in the simulation for a “small dead zone” from
Fleming & Stone (2003) is shown by the solid line in Fig. 2.
The magnetic Reynolds number varies from 1000 at the
midplane, to 9.23 × 105, 1.31 × 107, and 1.62 × 108 at
z/H = 1, z/H = 2, and z/H = 3, respectively, resulting
in a simulated disc with a dead zone whose vertical height
is � H .

In a recent paper, Turner et al. (2007) have presented
a study of dead zones which included shearing box simu-
lations of vertically stratified discs with resistivity varying
as a function of height, and also a multifluid simulation in
which the resistivity was able to change locally because of
chemical evolution of the gas. In this study, Turner et al.
(2007) employed the reaction network given by Eqns. (1)
– (4) in order to calculate the ionisation fraction and re-
sistivity. For those runs in which the resistivity was kept
constant in time, the initial resistivity profile was obtained
from the equilibrium solutions to Eqns. (1) – (4). The run
in which resistivity varied in time and space employed a
multifluid approach, similar to that described in Sect. 2.
Ionisation was assumed to be due to cosmic rays, and the
underlying disc model was the minimum mass solar neb-
ula model of Hayashi (1981). In Fig. 2 we present two of
the resistivity profiles employed by Turner et al. (2007)
corresponding to their runs F1 and F56. In run F1 the re-

sistivity was a fixed function of height and corresponded to
a radial location R = 1 AU with the gas–phase abundance
of magnesium equal to the solar abundance (3.39 × 10−5

magnesium atoms per hydrogen nucleus, corresponding to
x[Mg] ∼ 6.8 × 10−5 in our units). This run led to a lay-
ered accretion flow with active surface layers and midplane
dead zone, as expected from the steep resistivity profile.
It was shown that the boundary between dead and active
zones is well described by the criterion that MHD tur-
bulence is sustained by the MRI if the Lundquist number
Lu ≡ v2

A/(Ωη) > 1, where vA is the Alfven speed. Run F56
had a resistivity profile corresponding to a disc at 5 AU
with gas phase magnesium abundance equal to 10−6 below
solar abundance (corresponding closely to our model with
x[Mg] = 5 × 10−11). This model led to a fully turbulent
disc, as expected from the flat resistivity profile obtained
because the disc provides less shielding of cosmic rays at
5 AU.

The multifluid model presented by Turner et al. (2007),
in which the chemistry was evolved simultaneously with
the dynamics, led to an interesting and somewhat unex-
pected result. This disc model corresponded to the radial
position R = 1 AU in the disc, and assumed a gas–phase
magnesium abundance equal to the solar value. During
the early phase of the model, the disc showed the expected
layered structure with dead zone near the midplane, and
active zone near the disc surface. After about 60 orbits
the situation changed after a period of more intense mix-
ing caused by enhanced turbulent activity. The recombi-
nation time then exceeded the mixing time, allowing free
electrons to mix toward the midplane, where net radial
and azimuthal fields had built up due to field of the op-
posite polarity advecting through the vertical boundaries.
The presence of these net magnetic fields leads to an en-
hance magnetic stress that partially enlivens the dead zone
during periods when the ionisation fraction has been in-
creased.

In this paper, we assume that the ionisation of the
disc material arises because of X-rays that originate in
the corona of the central T Tauri star. We neglect contri-
butions from Galactic cosmic rays, as it remains an open
question whether or not they can to penetrate into disc
regions we consider. The X–ray ionisation rate decreases
with cylindrical radius R, because the X-ray optical depth
along the line of sight increases as one moves out into the
disc.

Our use of strictly periodic boundary conditions in the
vertical direction, along with an initial magnetic field that
has zero net flux, means that the net flux remains zero
throughout the simulations. The expectation then is that
turbulence will be sustained only in those regions where
the magnetic Reynolds number Rem

>∼ 104, and we do
not expect that large scale net–flux magnetic fields will be
able to accumulate in the dead zones of our simulations.
As such we do not expect to observe the behaviour shown
by simulation V1 of Turner et al. (2007). We now present
the results from a series of systematic experiments which
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examine the effects of chemical evolution and turbulent
mixing on the evolution of the MRI.

6. Simulation results

In this section we present the results of our multifluid
MHD simulations which examine the role of turbulent
mixing on the structure of dead zones. The primary aim
of these simulations is to demonstrate that there exists a
region of parameter space in which turbulent mixing can
enliven a dead zone which is otherwise predicted to exist
in models that neglect turbulent transport. A further aim
is to demonstrate good agreement between MHD simu-
lations and the predictions of a simple reaction–diffusion
scheme. This latter issue is addressed in Sect. 6.3.

When discussing the results of our simulations we
will often refer to certain averaged quantities. We use
the same averaging procedures presented in recent pub-
lications studying vertically stratified disc models (e.g.
Stone et al. 1996; Flemming & Stone 2003; Fromang &
Papaloizou 2006). The azimuthal and radial average of
quantity f(r, t) at a given time t is defined by

F ∗(z, t) = (f)∗ =

∫∫

f(x′, y′, z, t) dx′ dy′

∫∫

dx′ dy′

and the volume average is given by

F ∗∗(t) = (f)
∗∗

=

∫∫∫

f(x′, y′, z′, t) dx′ dy′ dz′
∫∫∫

dx′ dy′ dz′
.

where the symbols (f)
∗

and (f)
∗∗

, denote the correspond-
ing averaging procedures. The time–averaged values are

denoted by (f)
∗

and (f)
∗∗

.

A measure of the effective shear stress generated by the
turbulence is given by the parameter α, which has contri-
butions from both the Reynolds and Maxwell stresses:

α = αRey + αMax (14)

where

αRey(x, z) =
TRey

rΦ

P0

=
1

P0

% (vx − 〈vx〉) (vy − 〈vy〉) (15)

αMax(x, z) =
TMax

rΦ

P
=

−〈BxBy〉

4πP0

, (16)

and the azimuthal average (over y) is denoted by angled
brackets, and P0 is the initial midplane pressure. We reg-
ularly use the volume and time averaged values of α when
discussing the simulation results below. In the following
simulations we consider three different treatments of the
resistivity and chemistry, and we refer to these models as
model1, model2 and model3. We describe each of these
below, and each are summarised in table 2.
1) model1: This model assumes a static resistivity profile
which varies with height. The resistivity profile at t = 0
is obtained using the equilibrium solution of the kinetic

Table 2. List of models considered. Note that the column “re-
combination process included” specifies whether or not recom-
bination of free electrons occurs along with dynamical evolu-
tion.

model resistivity recombination process included
model1 ∂tη(t, z) = 0 no
model2 ∂tη(t, z) 6= 0 yes
model3 ∂tη(t, z) 6= 0 no

model presented in Eqns. (1) – (4). During the simula-
tions the local resistivity values are kept fixed. This model
corresponds to the single fluid models of Fleming & Stone
(2003), and the runs F1, F52, F56, F58 of Turner et al.
(2007).
2) model2: This is a multifluid model in which the resistiv-
ity varies in both time and space. The chemical reaction
network given by Eqns. (1) – (4) is solved simultaneously
with the dynamical evolution. The resistivity profile at
t = 0 is obtained from the equilibrium solution of the ki-
netic model.
3) model3: This is a multifluid model which has a resistiv-
ity profile which varies in time and space. The resistivity
profile at t = 0 is obtained using the equilibrium solution
of the kinetic model presented in Eqns. (1) – (4). For t > 0,
however, the recombination of free electrons with ions is
switched off, as is further ionisation of neutral species by
X–rays. Local changes in the resistivity are due only to
the turbulent mixing of ions. This model is equivalent to
one in which the initial values of resistivity are conserved
on fluid elements by being advected with the flow.

We now present our simulation results in detail. We be-
gin by highlighting simulations which show that turbulent
mixing can remove the dead zone, before examining disc
evolution at different radii and with different magnesium
abundances.

6.1. Dead–zone removal through turbulent mixing

In this subsection we present a suite of models which
demonstrate that turbulent mixing and continuing chemi-
cal evolution of the gas are able to enliven a dead zone. All
three models presented in this subsection correspond to a
radial location in the disc R = 10 AU, and have a gas–
phase magnesium abundance xMg = 5×10−11. Because of
the identical initial conditions used for these three models,
we can identify the specific effects of the chemistry on the
evolution of the MRI .

model1

The resistivity in this model is calculated from the equilib-
rium electron abundance predicted by the chemical model
presented in Sect. 2, and is held constant throughout the
simulation. The variation of magnetic Reynolds number
with height is shown in Fig. 2, which shows that the re-
sistivity profile is intermediate between that applied by
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Fig. 3. model1/model2 - Time averaged vertical profiles of the horizontally averaged density, normalised Maxwell and Reynolds
stresses TRΦ/P0, and plasma parameter β. The profiles on the left refer to the results obtained with the model assuming a
fixed resistivity (model1). Results obtained with model2 are shown in the right panels. Both shearing box models are calculated
for R = 10 AU and xMg = 5 × 10−11. αMax (solid line) and αRey (dashed - dotted line) refer to a time average taken over
[100,200] orbits (for model1) and [0,100] orbits for model2. For all the other quantities, the time averages are taken over 10 orbit
intervals, starting from t = 0 (dashed line). For model1 the solid line denotes averages taken between t = [140, 150] orbits, and
for model2 the solid lines represented averages taken between t = [90, 100] orbits. The dotted lines refer to time averages taken
over t = [0, 10], [10, 20], · · · , [80, 90] for model2, · · · , [130, 140] for model1.

Fleming & Stone (2003) in their “small dead zone” model,
and the model F56 presented by Turner et al. (2007).
Specifically Rem takes the following values: 1.4 × 103 at
the disc midplane; 6.0 × 103 at z/H = 1; 1.4 × 104 at
z/H = 2; 1.3 × 105 at z/H = 3.

In agreeement with our expectations, this simulation
resulted in a disc with well-defined dead and active zones,

with the boundary between these occuring at z/H ≈ 1
where Rem ' 6 × 103 and Lu ' 1. This dead zone is
larger than that obtained by Fleming & Stone (2003) in
their model whose resistivity profile is shown in Fig. 2, for
which the dead zone was confined to z/H ≤ 0.4.

The time and volume averaged sum of the Maxwell
and Reynolds stresses was found to be α∗∗ = 4.89× 10−3
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Fig. 4. model1/model2 - Time averaged vertical profiles of the horizontally averaged kinetic energy, 0.5%v2/P0, and the magnetic
energy B2/(8πP0). The profiles on the left panel show results obtained assuming a fixed resistivity profile (model1), while the
results obtained with model2 are shown in the right panels. Both shearing box models are calculated for R = 10 AU and
xMg = 5 × 10−11. The time average is taken over 10 orbit intervals, starting from t = 0 (dashed line) toward the interval
t = [90, 100] (solid line, model2) and t = [140, 150] (solid line, model1), respectively. The dotted lines refer to time averages
taken over t = [0, 10], [10, 20], · · · , [80, 90]([130, 140]) orbits.

when the time average was taken over the interval [20,100]
orbits. When taken over an interval [100,200] orbits, the
stresses were found to decrease to α∗∗ = 8.49×10−4. This
occurs because the stresses are higher during the develop-
ment of the non linear stage of evolution early on in the
simulation. We note that a fully active disc is expected to
have a value α∗∗ >∼ 10−2 (see later).

The vertical profiles for the horizontally averaged den-
sity %, the α values associated with the Maxwell and
Reynolds stresses, the plasma parameter β, the kinetic
and magnetic energy are shown in the left hand panels
of Figs. 3 and 4. The time averages are taken over 10 or-
bit intervals, starting from t = 0 (dashed line) towards
[140, 150] (solid line). The dotted lines refer to profiles av-
eraged over t = [0, 10], [10, 20], · · · [130, 140]. For each of
the profiles, the same qualitative behaviour reported in
Fleming & Stone (2003) is observed:
(i) The vertical density profile remains unchanged
throughout the nonlinear evolution of the MRI.
(ii) A significant decline in the magnetic field energy to-
wards the disc midplane is observed as compared to sur-
face regions; β at z/H = 0 is between 2 and 3 orders of

magnitude greater than in the active zones.
(iii) Dominance of the Reynolds stress over the Maxwell
stress is observed in dead zones, due to the penetration of
sound waves emitted in the overlying active zones, while
the Maxwell stress is the dominant mechanism by which
transport in active zones occurs. The transition occurs at
z/H ' 1 where the cross-over between active and dead
zones occurs.

model2

In this model the initial free electron abundance and re-
sistivity profile is calculated from the equilibrium solu-
tion to Eqns. (1) – (4). The full set of multifluid equa-
tions, and the chemical network, are evolved together so
that the local resistivity can change through turbulent
transport of ions and and chemical evolution (recombi-
nation/ionisation) of the gas. For this model we estimate
that the turbulent mixing time corresponding to α ' 0.01
is shorter than the recombination time, such that chemical
mixing should enliven the dead zone. This is indeed what
we find, as the simulation results in a turbulent flow which
fills the entire volume of the disc, with α∗∗ = 1.31× 10−2,
where the time average was performed in the interval
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Fig. 5. model3: - Time averaged vertical profiles of the horizontally averaged value of normalised Maxwell and Reynolds stresses
TRΦ/P0, the plasma parameter β, the kinetic energy 0.5%v2/P0, and the magnetic energy B2/(8πP0). As in the previous figures,
the shearing box model is calculated for R = 10 AU and xMg = 5 × 10−11. αMax (solid line) and αRey (dashed - dotted line)
refer to a time average taken over [0,100] orbits. For all the other quantities, the time average is taken over 10 orbit intervals,
starting from t = 0 (dashed line) towards [90, 100] (solid line). The dotted lines refer to time averages taken over the intervals
t = [0, 10], [10, 20], · · · , [80, 90] orbits.

[20,100] orbits. We plot the vertical profiles of the vari-
ous physical quantities that we have already described for
model1 in Figs. 3 and 4. Comparing the figures for model1
and model2 we can make the following observations:
(i) The mean vertical density profile remains approxi-
mately constant in both models
(ii) Whereas the Reynolds stress dominates near the mid-
plane in model1 and the Maxwell stress dominates in the
disc surface layers, we see that the Maxwell stress is dom-
inant throughout in model2.
(iii) The plasma β parameter is found to become very high
(β ' 105) in the midplane of the disc in model1 as the
magnetic field strength there becomes very low, whereas
it remains in the range 10 ≤ β ≤ 103 for |z/H | ≤ 2 for
model2, indicative of a fully active disc.
(iv) The kinetic energy throughout the disc, but espe-
cially near the midplane, is much higher in model2 than
in model1 as the turbulent velocity field is driven by the
MRI.
(v) The magnetic energy near the disc midplane for
model2 is more than two orders of magnitude greater than
for model1 due to the continuing dynamo action associ-

ated with the MRI.
We conclude that model2 shows unambiguously that the
dead zone in the disc can be removed by turbulent mixing
and continuing chemical evolution under circumstances
where the local mixing time scale is smaller than the re-
combination time, in basic agreement with the prediction
of the reaction–diffusion model presented in paper II.

model3

At t = 0 the initial resistivity profile is set up in the same
way as described for model1 and model2. For t > 0, the
local resistivity is updated after every MHD time step be-
cause of the transport of free electrons and ions only. Due
to the inhibition of recombination and ionisation in this
model, free electrons diffuse and cause the resistivity to
become homogeneous on long time scales. In the presence
of sufficient numbers of free electrons in the initial ionisa-
tion state of the disc, we expect that mixing will lead to a
fully active disc, and indeed this is what we find. Instead
of the two–layer structure obtained using model1 above,
with dead and active zones, the MHD turbulence now fills
the full vertical extent of the disc. For t > 40 orbits, we
observe a quasi steady state characterised by small fluctu-
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ations around the mean value α∗∗ = 5.75×10−3, where the
time average was taken in the interval [20,100] orbits. The
vertical profiles of various quantities are shown in Fig. 5.
Compared with the results obtained for model1, we see
that the volume averaged turbulent stresses in each case
are very similar, even though model1 had a dead zone.
The reason for this is that the resistivity in model3 is
higher near the disc surface because of mixing, and so
reduces the strength of the turbulence there. The subse-
quent enlivening of the midplane in model3 does not lead
to a substantial increase in the overall stress because the
now–uniform resistivity is sufficient to damp the strength
of the turbulence compared to its state in an ideal MHD
calculation.

Comparing model3 with model2 we see that higher
stresses and more vigorous turbulence are generated by
model2. This is because model3 generates a disc without
a dead zone, but in which the resisivity is higher than for
model2, such that the strength of the resulting turbulence
is suppressed somewhat. The results for model3 show that
mixing the initial free electron population throughout the
disc can cause the dead zone to disappear, but that allow-
ing the chemical evolution of the disc to continue during
the turbulent mixing leads to a more active disc. This is
because the continuing ionisation of species near the disc
surface, followed by mixing toward the midplane, produces
a higher ionisation fraction overall.

6.2. Results as function of xMg and orbital radius

A primary motivation for this paper was the indication
in paper II that dead zones could be enlivened by a com-
bination of turbulent mixing and sufficient abundance of
gas–phase magnesium atoms. In that paper we presented
calculations of the ionisation fraction in standard α-discs
using reaction–diffusion models. The main results were
that turbulent mixing could only change the structure of
a dead zone if: (i) the abundance of magnesium was suf-
ficient (so as to increase the recombination time); (ii) one
was considering locations further out in the disc where the
lower temperatures and densities increase the recombina-
tion time relative to the local turbulent transport time.

The purpose of the simulations presented in the following
subsections are to examine how turbulent mixing affects
dead zone structure as a function of magnesium abun-
dance and radial position in the disc, as a test of the pre-
dictions contained in paper II. We also perform a detailed
comparison between some of our MHD simulations and
the predictions of the reaction–diffusion model. These sim-
ulations solve the full set of multifluid equations in com-
bination with the chemical model described in Sect. 2. We
first present shearing box simulations of discs at various
locations between 1 and 10 AU with gas–phase magne-
sium abundance equal to zero, before considering a sim-
ilar set of models with gas–phase magnesium abundance
xMg = 5 × 10−11, which is about 10−6 of the solar value.

Fig. 6. model2: - Space-time plots of the horizontally aver-
aged value of α calculated at different radial positions R and
a metal elemental abundance of xMg = 0. The cylindrical ra-
dius R varies from 1 AU (top panel) to 10 AU (bottom panel)
passing through R = 3, 5, and 7 AU. The solid line drawn
at the boundary between the live and dead zones indicates the
position where the horizontally averaged Lundquist number
Lu = 1.

6.2.1. Models with xMg = 0

We begin our discussion by first examining the dead
zone structure after saturation obtained for model2 with
xMg = 0. We examine the disc evolution at radii R = 1,
3, 5, 7 and 10 AU. In basic agreement with the results
obtained in paper II, the dead zone structures obtained
when magnesium is absent are very similar for all radii
considered. In Fig. 6 we present space-time plots of the
horizontally averaged value of α, and it is clear that the
disc sustains a two–zone structure for all radii and all time,
which consists of a large dead zone which extends from
the midplane to |z/H | ' 2 where the magnetic Reynolds
number Rem

>∼ 4000 and the Lundquist number Lu >∼ 1
(shown by the solid lines in Fig. 6). Across the region
bounded by 2 ≤ |z/H | ≤ 2.3 we find that the horizontally
averaged α varies by more than two orders of magnitude,
and this is maintained for the duration of the simulation
(100 orbits).
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Fig. 7. model2: - Space-time plots of the horizontally averaged
value of α calculated at different radial positions R and a metal
elemental abundance of xMg = 5 × 10−11. The cylindrical ra-
dius R varies from 1 AU (top panel) to 10 AU (bottom panel)
passing through R = 3, 5, and 7 AU. The solid line drawn
at the boundary between the live and dead zones indicates the
position where the horizontally averaged Lundquist number
Lu = 1.

6.2.2. Models with xMg = 5 × 10−11

We now consider the dead zone structures obtained for a
magnesium abundance of xMg = 5 × 10−11 at radii R =
1, 3, 5, 7, and 10 AU. Space-time plots of the hoizontally
averaged value of α are shown in Fig. 7. At R = 1 AU and
3 AU, the location of the boundary separating the dead
from the active layer matches very well the structure ob-
tained for xMg = 0, since the height at which Rem begins
to exceed 4000 is |z/H | ' 2 (which is also the height at
which the Lundquist number Lu > 1, shown by the solid
lines in Fig. 7). Significant changes in the dead zone struc-
ture start to become evident at R ≥ 5 AU. At this radius
the recombination time is similar to the turbulent mixing
time, allowing the resistivity to be reduced there through
the transport of free electrons into the dead zone. Over
longer time scales we see that the dead zone that is estab-
lished early on in the simulation starts to diminish, and
between 80–100 orbits there is evidence that the dead zone

size has decreased significantly. Nonetheless, at 100 orbits
we find that there remains a region in the vicinity of the
midplane that retains an average values of α ' 10−4.

By contrast, the space-time plots of the horizontally
averaged value of α at R = 7 and 10 AU show that the
two–layer structure has completely disappeared, because
mixing reduces the resistivity, and hence increases the
magnetic Reynolds number to values >∼ 4000. Turbulence
now fills the entire computational domain which is con-
firmed by the time and volume averaged values of α∗∗:
1.07×10−2 for R = 7 AU and 1.31×10−2 for R = 10 AU.

Our results indicate that dead zones can be reduced
or removed altogether through turbulent mixing. The
criteria for sustaining MHD turbulence have already been
discussed in the context of reaction–diffusion models
in paper II, and also apply to the shearing box models
considered here. These criteria are:
(i) There are sufficient metal atoms available in the gas
phase so that recombination between metal ions and
electrons becomes the dominant process by which the
local ionisation fraction is determined.
(ii) The turbulent mixing time scale is shorter than the
dominant recombination time on which free electrons are
removed.

We now compare in detail the results of some of our
MHD simulations with those obtained using the reaction–
diffusion model presented in paper II and discussed in
Sect. 3.

6.3. Comparing shearing box simulations and

reaction–diffusion models

Encouraged by the good qualitative agreement obtained
between the MHD simulations and the results presented
in paper II, we now examine in detail the level of agree-
ment between the simulations and the reaction–diffusion
model. As mentioned in Sect. 3, we assume that the diffu-
sion coefficient, D, which governs the rate at which chem-
ical species mix vertically in the disc, is equal to an ef-
fective kinematic viscosity generated by the turbulence
νm = αmc2

s/Ω, where αm refers to a dimensionless pa-
rameter that measures the rate of vertical mixing (not to
be confused with the value of α associated with the ra-
dial transport of angular momentum). When solving the
reaction–diffusion equations we use a range of αm values
to obtain different solutions, which we then compare with
the results of the MHD simulations. Previous work on the
vertical mixing of dust grains and molecules (Carballido
et al. 2005; Johansen & Klahr 2005; Turner et al. 2006;
Fromang & Papaloizou 2006) suggests that the ratio of the
rate of angular momentum transport to the rate of trans-
port of chemical species by the turbulence should lie in the
range ν/νm ' 1–3, and we examine how well our best–fit
value of νm agrees with this expectation. Furthermore, the
results of Turner et al. (2006) and Fromang & Papaloizou
(2006) show that the diffusion coefficient is not constant
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with height above the midplane, but increases with height
because the turbulent velocities increase in proportion to
the Alfven speed. Although we consider only a constant
value of D for each reaction–diffusion model that we run,
we examine the quality of the best–fit that we obtain, and
quantify this by stating the error obtained in predicting
the magnetic Reynolds number (which is a proxy for the
free–electron abundance) at the disc midplane and surface.
In general we find that using a uniform diffusion coefficient
leads to a slight overestimate of the mixing rate near the
midplane, and a slight underestimate near the surface.

Overall we find good agreement between the reaction–
diffusion model and the MHD simulation when the value
of αm adopted in the former is between a factor of 1–2
times lowerer than the time and volume averaged value of
α obtained in the latter. The α values corresponding to
each MHD simulation are listed in table 3. The best–fit
values of αm are listed in table 4, along with the Schmidt
number which measures α/αm.

We have compared the results of models located at
disc radii R = 5, 7 and 10 AU, and with magnesium
abundances xMg = 0 and xMg = 5 × 10−11. In each
case we examine how the vertical profile of the magnetic
Reynolds number Rem evolves with time, and in the case
of the reaction–diffusion model we calculate the equilib-
rium value of Rem from the underlying ionisation fraction.
In each case we initiate the calculation assuming that the
initial chemical abundance profile is equal to the equilib-
rium state in the absence of mixing. For each disc radius,
we plot the profile of the evolving Rem below. In the left
panels we present the results from the MHD simulations,
and in the right panels the equilibrium profile from the
corresponding reaction–diffusion model assuming different
values of αm. The values of Rem plotted for shearing box
simulations are horizontal and time averages, where each
time average was performed over 10 orbit intervals. We
plot the initial value of Rem using the dashed line, and
subsequent values are plotted using dotted lines starting
at t = [0, 10] and moving up to t = [80, 90]. The final
values at t = [90, 100] are shown using the solid line.

6.3.1. Results at 5 AU

We first discuss the results for R = 5 AU which are shown
in Fig. 8. Note that in the upper left panel of Fig. 8,
the magnetic Reynolds number shows a well defined min-
imum, and this arises because this MHD simulation was
performed with a ceiling being adopted for the resistivity
in the induction equation, corresponding to a minimum
value of Rem = 20. This was done to ensure that the time
step constraint arising from the diffusive term in the in-
duction equation was not too severe. The minimum value
of Rem that we calculated from the electron fraction dur-
ing this simulation was Rem = 10.007.

The upper left panel of Fig. 8 simply shows that the
model at 5 AU with xMg = 0 maintains a significant dead
zone with |z/H | ≤ 2 (where Rem ' 4000) throughout,

Table 3. Time and volume averaged values of α∗∗ obtained for
the models described in the paper. The first column gives the
model label and the cylindrical radius considered. The values of
α∗∗ are listed in the 2nd and 3rd column assuming a elemental
metal abundance xMg of 0 and 5 × 10−11, respectively. Apart
from the value denoted with the symbol †, the time average was
taken over [20,100] orbits, while ()† refers to the time average
taken over [100,200] orbits.

α∗∗(xMg = 0) α∗∗(xMg = 5 · 10−11)

model1

at 10 AU 4.89 · 10−3

(8.49 · 10−4)†

model3

at 10 AU 5.75 · 10−3

model2

at 1 AU 2.67 · 10−4 2.51 · 10−4

at 3 AU 3.01 · 10−4 3.46 · 10−4

at 5 AU 2.84 · 10−4 1.11 · 10−3

at 7 AU 5.44 · 10−4 1.07 · 10−2

at 10 AU 5.10 · 10−4 1.31 · 10−2

Table 4. Values of the diffusion coefficients applied to the
reaction-diffusion model which best matches the corresponding
MHD results for model2 with xMg = 5 · 10−11. The Schmidt
number Sc is listed in the 3rd column refering to time and
volume averaged values of α∗∗ between [20,100] orbits.

R [AU] αm SC

5 5.89 · 10−4 1.88
7 8.67 · 10−3 1.23

10 9.28 · 10−3 1.41

and the magnetic Reynolds number does not change from
its initial value. The upper right hand panel shows that
the reaction–diffusion equation agrees with this, as the
single line plotted is actually three lines overplotted cor-
responding to αm = 0, 10−3 and 10−2. In the absence of
magnesium, the recombination rate is simply too high to
allow mixing to modify the dead zone for αm values in
this range.

The lower left panel shows the evolution of Rem with
xMg = 5×10−11. It is clear that the Rem profile in this case
is non stationary near the midplane, even after 100 orbits,
and this appears to be because this particular model is
one which maintains a dead zone throughout the run, but
whose parameters are close to those which would allow
mixing to remove the dead zone. Episodic increases and
decreases in turbulent activity modify the ionisation state
near the midplane, causing the Rem values to oscillate
about a value close to 1000.

The lower right panel shows the results from the
reaction–diffusion model agree quite well with the mean
Rem profile from the MHD run, in particular when αm =
10−3. Inspection of table 3 shows that mean value of α
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Fig. 8. model2: - Comparison between vertical profiles of the magnetic Reynolds number obtained for R = 5 AU and xMg = 0
and xMg = 5 × 10−11, respectively. Left panels show shearing box simulation results, and right panels reaction–diffusion model

results. In the left panels, the time averaged vertical profiles of the magnetic Reynolds number Re∗ are shown by taking the
time average over 10 orbit intervals, starting from t = 0 (dashed line) towards [90, 100] (solid line). The other profiles (dotted
lines) refer to the intervals t = [0, 10], [10, 20], · · · [80, 90] orbits. The resistivity profiles of the magnetic Reynolds number Rem

shown in the right panels refer to the equilibrium profiles obtained with the reaction–diffusion model assuming different values
of αm. In particular for xMg = 0, the value of the magnetic Reynolds number is not affected by the actual value of αm, leading
to identical profiles for αm = 0, αm = 10−3, and αm = 10−2. Note that both shearing box simulations and the reaction–diffusion
models are initiated with the steady state profile obtained for αm = 0.

obtained from the MHD run was 1.31 × 10−3. Table 4
shows that the best fit reaction–diffusion model has a
value of αm = 5.89×10−3 (such that the Schmidt number
equals 1.88). The error in the predicted value of Rem at
the midplane was 3 %, while the error at the disc surface
was ' 15%, showing good overall agreement even when
a uniform diffusion coefficient is adopted in the reaction–
diffusion models.

6.3.2. Results at 7 AU

The vertical profiles of Rem obtained at R = 7 AU are
shown in Fig. 9. The upper left and right panels show re-
sults from the MHD simulation and reaction–diffusion cal-
culation, respectively for magnesium abundance xMg = 0.
Once again we see that mixing has no effect on the mag-

netic Reynolds number profile in the absence of magne-
sium, and a substantial dead zone is maintained through-
out both calculations, which show excellent agreement.

The lower left and right panels show models for which
xMg = 5×10−11. Here we see that there is very significant
change in the magnetic Reynolds number profile as tur-
bulent mixing ensues. In the MHD simulation we see that
the minimum value of Rem changes from 1000 to ' 4000,
which is high enough for the disc midplane to become ac-
tive. The lower right panel shows good agreement with the
MHD simulation when α = 10−2. We see from table 3 that
the average value of α from the MHD run is 1.07× 10−2.
Table 4 shows that the best fit reaction–diffusion model
has a value of αm = 8.67 × 10−3 (such that the Schmidt
number equals 1.23). The error in the predicted value of
Rem at the midplane was 2 %, while the error at the disc
surface was ' 15%.
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Fig. 9. model2: - Comparison between vertical profiles of the magnetic Reynolds number obtained for R = 7 AU and xMg = 0
and xMg = 5 × 10−11, respectively. Left panels show shearing box simulation results, and right panels reaction–diffusion model

results. In the left panels, the time averaged vertical profiles of the magnetic Reynolds number Re∗ are shown by taking the
time average over 10 orbit intervals, starting from t = 0 (dashed line) towards [90, 100] (solid line). The other profiles (dotted
lines) refer to the intervals t = [0, 10], [10, 20], · · · [80, 90] orbits. The resistivity profiles of the magnetic Reynolds number Rem

shown in the right panels refer to the equilibrium profiles obtained with the reaction–diffusion model assuming different values
of αm. In particular for xMg = 0, the value of the magnetic Reynolds number is not affected by the actual value of αm, leading
to identical profiles for αm = 0, αm = 10−3, and αm = 10−2. Note that both shearing box simulations and the reaction–diffusion
models are initiated with the steady state profile obtained for αm = 0.

6.3.3. Results at 10 AU

The profiles obtained at R = 10 AU are shown in Fig. 10.
The upper panels are again in good agreement when
xMg = 0, showing that mixing has no effect on the dead
zone structure. The lower panels show that the Rem profile
is changed significantly by mixing when xMg = 5× 10−11,
such that the dead zone is enlivened completely. In the
MHD simulation the minimum value of Rem changes from
' 1000 to ' 6000, allowing the dead zone to become MRI–
active and the disc to be turbulent throughout its height.
Good agreement in the Rem profile is obtained using the
reaction–diffusion model when αm ' 10−2, which as ex-
pected is slightly lower than the value α = 1.31 × 10−2

listed in table 3 as arising from the MHD simulation.
Table 4 shows that the actual best fit reaction–diffusion
model has a value of αm = 9.28 × 10−3 (such that the

Schmidt number equals 1.41). The error in the predicted
value of Rem at the midplane was < 1 %, while the er-
ror at the disc surface was ' 15%, which again illustrates
the fact that reasonable agreement can be obtained when
using a uniform diffusion coefficient.

6.3.4. Reaction-diffusion results for model3

We finally present a comparison between the MHD simu-
lation for model3 and a corresponding reaction–diffusion
model. To recap: model3 allows the free electrons and ions
to diffuse, but does not include recombination or on–going
ionisation. The MHD simulation and reaction-diffusion
model were initiated with the equilibrium chemical abun-
dance for the case xMg = 5 × 10−11 at R = 10 AU. The
expectation is that turbulent mixing will cause the Rem
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Fig. 10. model2: - Comparison between vertical profiles of the magnetic Reynolds number obtained for R = 10 AU and xMg = 0
and xMg = 5 × 10−11, respectively. Left panels show shearing box simulation results, and right panels reaction–diffusion model

results. In the left panels, the time averaged vertical profiles of the magnetic Reynolds number Re∗ are shown by taking the
time average over 10 orbit intervals, starting from t = 0 (dashed line) towards [90, 100] (solid line). The other profiles (dotted
lines) refer to the intervals t = [0, 10], [10, 20], · · · [80, 90] orbits. The resistivity profiles of the magnetic Reynolds number Rem

shown in the right panels refer to the equilibrium profiles obtained with the reaction–diffusion model assuming different values
of αm. In particular for xMg = 0, the value of the magnetic Reynolds number is not affected by the actual value of αm, leading
to identical profiles for αm = 0, αm = 10−3, and αm = 10−2. Note that both shearing box simulations and the reaction–diffusion
models are initiated with the steady state profile obtained for αm = 0.

profiles to change from their initial values to become uni-
form. Inspection of Fig. 11 confirms that our models agree
with this expectation.

7. Conclusions

We have presented the results from a series of shearing
box multifluid MHD simulations aimed at examining the
evolution and structure of dead zones in protoplanetary
discs, in the presence of turbulent transport of ions, on–
going chemical evolution of the gas, and ionisation due to
X–rays emitted by the central star. We have adopted a
number of simplifying assumptions, including the absence
of small grains whose presence in even modest numbers
would lead to rapid removal of free electrons (Sano et al.
2000; Ilgner & Nelson 2006a). As such, our results are
likely to be most applicable to protostellar discs at a fairly

late stage of evolution after grains have accumulated to
form larger bodies.

A primary objective of this work was to use MHD
simulations to re–examine the results of Ilgner & Nelson
(2006b), who used a simple reaction–diffusion model to
calculate the effects of turbulent mixing on dead zone
structure. The simple model predicted that turbulent
transport can be effective at enlivening a dead zone pro-
vided that: (i) the abundance of gas–phase magnesium
is sufficient; (ii) one considers regions of the disc beyond
radii >∼ 5 AU where turbulent mixing occurs on a shorter
time scale than recombination. The main conclusions of
this paper are that full multifluid MHD simulations are
in good agreement with these predictions. Models simu-
lated at radii between 1 – 10 AU, and with no magnesium
in the gas–phase, showed a two–layer structure consisting
of an actively accreting zone near the disc surface, and a
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Fig. 11. model3: - Comparison between vertical profiles of the magnetic Reynolds number obtained for R = 10 AU and
xM = 5× 10−11 obtained by the shearing box simulation (left panel) and the reaction–diffusion model (right panel). The results
refer to the simulation where recombination and ionisation are switched off (model3). In the left panel, the time averaged
vertical profiles of the magnetic Reynolds number Re∗m are shown by taking time averages over 10 orbit intervals, starting from
t = 0 (dashed line) towards [90, 100] (solid line). The other profiles (dotted lines) refer to t = [0, 10], [10, 20], · · · [80, 90]. The
resistivity profiles of the magnetic Reynolds number Rem shown in the right panel refer to the equilibrium profiles obtained
with the reaction–diffusion model assuming different values of αm. In fact, the equilibrium profile obtained for model3 is not
affected by the actual value of αm > 0. Note that both shearing box simulation and the reaction–diffusion model are initiated
with the equilibrium profile obtained for αm = 0.

magnetically inactive region near the midplane. The ad-
dition of gas–phase magnesium with fractional abundance
xMg = 5 × 10−11 led to significant dead zones persisting
for radii R ≤ 5 AU, but models at 7 and 10 AU resulted
in fully active discs without dead zones. The implications
for protoplanetary discs is that at late times, when most
of the small submicron sized dust grains have grown to
much larger sizes, the dead zone beyond 5 AU may be en-
livened because of turbulent transport of ions toward the
midplane. Regions interior to 5 AU will, however, retain
their dead zones.

A further conclusion of our work is that detailed com-
parison between the simple reaction–diffusion model and
the MHD simulations leads to very good agreement in the
vertical profiles of resistivity and magnetic Reynolds num-
ber when an appropriate diffusion coefficient is chosen.
Typically we find that the best–fit vertical diffusion coef-
ficient corresponds to a ratio in the range 1–2 between the
rate at which angular momentum in transported radially
and the rate at which diffusion of chemical species occurs
vertically. This result is consistent with those presented
by Carballido et al. (2005), Johansen & Klahr (2005),
Turner et al. (2006) and Fromang & Papaloizou (2006)
who showed that turbulent diffusion of dust (and chemi-
cal tracers) occurs on a slightly slower time scale than the
transport of angular momentum, since it is driven through
correlations in the perturbed flow velocities only.

It has traditionally been assumed that MRI-driven
MHD turbulence in discs can be sustained against the
damping effects provided by ohmic resistivity if magnetic
field diffusion over the characteristic wavelength of the in-
stability occurs on a time scale longer than the growth

time. Indeed Turner et al. (2007) showed that such a con-
dition provides a good indicator of where the transition
between active and dead zones in a disc will occur. They
showed that the transition zone occurs where the Lunquist
number Lu ≡ v2

A/(ηΩ) ' 1, and our simulation results are
in good agreement with this. Recent work by Fromang &
Papaloizou (2007) and Fromang et al. (2007), however, has
shown that in the case of non stratified shearing box sim-
ulations, turbulence is only sustained in discs where the
magnetic Prandtl number Pm ≡ ν/η > 1 (where ν is the
physical (molecular) viscosity), even when Lu > 1 in the
initial state. The interpretation is that MRI-driven tur-
bulence cascades the magnetic field down to the smallest
scales available, by virtue of the turbulent velocity field
twisting the field up. If the characteristic scale on which
velocity fluctuations are damped is smaller than the resis-
tive scale, then a zero net flux field will be dissipated and
turbulence will die. Interestingly, the magnetic Prandtl
number in protostellar discs is expected to be Pm < 1,
since resistivity is high and viscosity is low. Fromang &
Papaloizou (2007) also show that the intrinsic numerical
magnetic Prandtl number of the ZEUS code is > 1, at
least for simulations with resolutions feasible on current
computers. This suggests that the results in this paper,
and those in other papers that have looked at dead zones,
are modelling discs which only fullfil one of the necessary
criteria for MHD turbulence to be sustained in a physical
way, namely that Lu > 1. The condition for Pm > 1 is
satisfied because of the nature of numerical dissipation in
the code. We note that the effects observed by Fromang
& Papaloizou (2007) and Fromang et al. (2007) occur for
the particular case of non stratified shearing box simula-
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tions, and that a mechanism for maintaining active MRI
turbulence may be the generation of large scale magnetic
field through magnetic buoyancy effects and field stretch-
ing in vertically stratified discs, such as those we consider
in this paper. Nonetheless, it is clearly necessary to ex-
amine these issues by including the appropriate viscous as
well as resistive transport coefficients in simulations, and
we will do this in a future publication.

There are two additional issues that we have not ad-
dressed in this paper. The first is that scattering of X–
rays toward the disc midplane may increase the ionisation
rate in the disc by up to an order of magnitude (Igea &
Glassgold 1999), and this can have an obvious effect on
the structure of the dead zone. Although we have not un-
dertaken an extensive analysis of the effect of this, we have
run a model at 1 AU with xMg = 5×10−11 with the X–ray
luminosity increased by two orders of magnitude. We find
only a small change in the dead zone structure in this case.
We would expect in general that increases in the X–ray lu-
minosity due to scattering will move the radial boundary
of the dead zone inward slightly, but will not completely
remove the dead zone. A final issue that we have not ad-
dressed in this paper is that of X–ray flares. Observations
of T Tauri stars by CHANDRA have shown that they emit
regular outbursts of X–rays which may increase the X–ray
luminosity by a few orders of magnitude, and also harden
the X–ray spectrum (Favata et al 2005; Wolk et al. 2005).
This issue was examined by Ilgner & Nelson (2006c), who
showed that the flaring could significantly modify dead
zones in protoplanetary discs. We will address this issue
in a future paper using multifluid MHD simulations with
chemistry, so that both the effects of X–ray flaring and
chemical mixing on dead zone structure can be examined.
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