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ABSTRACT
We perform numerical simulations of a disc-planet system using various grid-based and
smoothed particle hydrodynamics (SPH) codes. The tests arerun for a simple setup where
Jupiter and Neptune mass planets on a circular orbit open a gap in a protoplanetary disc dur-
ing a few hundred orbital periods. We compare the surface density contours, potential vorticity
and smoothed radial profiles at several times. The disc mass and gravitational torque time evo-
lution are analyzed with high temporal resolution. There isoverall consistency between the
codes. The density profiles agree within about 5% for the Eulerian simulations while the SPH
results predict the correct shape of the gap although have less resolution in the low density
regions and weaker planetary wakes. The disc masses after 200 orbital periods agree within
10%. The spread is larger in the tidal torques acting on the planet which agree within a factor
2 at the end of the simulation. In the Neptune case the dispersion in the torques is greater than
for Jupiter, possibly owing to the contribution from the notcompletely cleared region close to
the planet.

Key words: Physical data and processes: accretion, accretion discs – hydrodynamics. Solar
system: planets and satellites: general.

1 INTRODUCTION

Hydrodynamics is a difficult subject, which has caused many prob-
lems for many distinguished physicists. However, it is not atopic
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which can be avoided, due to the central part that gas plays inthe
cosmos.

The basic equations of hydrodynamics are the Navier-Stokes
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equations, and have been known for almost two centuries:

∂ρ
∂ t

+∇ · (ρv) = 0 (1)

∂v
∂ t

+(v ·∇)v = − 1
ρ

∇p−∇Φ+∇ ·T (2)

whereρ is the density,v the velocity of the fluid,p the pressure,
Φ the gravitational potential andT is the full viscous stress tensor
(see e.g. Mihalas and Weibel Mihalas 1984). The first equation de-
scribes the conservation of mass and the second, conservation of
momentum. An equation of state closes the system of equations,
and additional terms may be added as required. Despite theircom-
paratively simple form, the Navier-Stokes equations have proved
remarkably stubborn to mathematical analysis.

The problem lies in thev ·∇v terms (the so-called ‘advection’
terms). These arise because the equations describe a fluid moving
past a fixed point in space (the Eulerian point of view). The ad-
vection terms make the equations non-linear (since they areeffec-
tively proportional tov2), rendering many mathematical techniques
useless. Indeed, no one has yet proven that solutions to the Navier-
Stokes equations are unique. This is in sharp contrast to many other
important equations in physics. For example, the Poisson equation
is linear, and has unique solutions. This opens up many avenues for
obtaining solutions — the Method of Images being a well known
example. As a result of this non-linearity, theoretical investigation
of fluids has to be restricted to highly idealised flows.

To make progress then, we are forced to turn to computers.
Numerical algorithms for solving complex equations have been
studied for centuries, and computers are ideal for implementing
these. Unfortunately, computers are tricky beasts, with a habit of
doing precisely what you told them to, just when you least ex-
pected it. The ‘obvious’ way of computing a numerical solution
may well be unstable (this is particularly true of the Navier-Stokes
equations), and an implementation of a stable method may well
contain bugs. Floating point numbers have finite accuracy, and var-
ious subtleties arise when codes approach this limit. In particular,
arithmetic ceases to be distributive and tests for equalitycease to
be reliable. Different architectures, operating systems and compil-
ers all add to the mix. For this reason, work performed on com-
puters is better described as a ‘numerical experiment’ rather than a
‘simulation.’

Fortunately, there is no need to be overly pessimistic about
the situation. For example, although the minutiae of floating point
numbers and the vagaries of different compilers can be trouble-
some, these should not give problems in the majority of cases. Un-
less agreement to the last bit is required, there should be nosig-
nificant difference in results obtained with different architectures
and compilers. Instead, it suffices to focus on differences between
algorithms for solving the Navier-Stokes equations. Of course, all
hydrodynamics codes are carefully tested against simple problems
(such as shock-tubes). It is on more complex problems that differ-
ences and difficulties can be exposed.

Within the context of the EU-RTN “The Origin of Planetary
Systems,”1 we have conducted a comparison of hydrodynamics
codes, which we present in this paper. The problem we selected was
that of a planet in a fixed circular orbit in a circumstellar disc. This
has the virtue of simplicity, while still retaining sufficient complex-
ity to allow us to see meaningful differences between the various
algorithms. We ran the test problem on 17 independent codes.

1 http://www.usm.uni-muenchen.de/Planets/

A comparison of several numerical methods on the problem
of a planet embedded in a disc was performed by Bryden et al.
(1999) using SPH, van Leer and Godunov methods with different
equations of state. In particular, they studied the accretion onto the
planet after it had cleared a gap. Other examples of comparisons in
different fields to verify algorithms and implementations published
during the last few years include the Santa Barbara cluster project
(Frenk et al. 1999), the non-LTE radiative transfer code comparison
(van Zadelhoff et al. 2002), the Rayleigh-Taylor instability study
by the Alpha-Group collaboration (Dimonte et al. 2004) and the
comparison of models of photoionization regions (Péquignot et al.
2001).

The aim of this project is to test the reliability of present nu-
merical computations of disc-planet interaction with a quantitative
comparison and generate a benchmark for future simulations. In
Section 2, we briefly describe the interaction between a planet and
a protoplanetary disc and outline the motivation for this study. The
initial setup and boundary conditions of the problem are described
in Section 3. In Section 4, the numerical methods used in the com-
parison are described. The results are shown in Section 5. Wedis-
cuss the results in Section 6, and in Appendix A we summarize our
experience with this project that could be useful for futurecompar-
isons.

2 DISC-PLANET INTERACTION

Over 160 extrasolar planetary systems have been discovered
by radial velocity measurements during the last years (e.g.
Mayor and Queloz 1995; Marcy and Butler 1996). Giant planets
have been found in very close orbits around the central star with
orbital periods of a few days and almost circular orbits, theso-
called “Hot Jupiters”. Planets orbiting at larger distances from the
star show a broad eccentricity distribution reaching roughly e= 0.9
(for recent reviews of the properties of the observed systems see
Marcy et al. 2003, 2005). The origin of the differences with the
planets in the solar system is not well understood, althoughvarious
explanations have been proposed. The standard models explain gi-
ant planet formation either through planetesimal accumulation fol-
lowed by rapid gas accretion onto the planet core (Pollack etal.
1996) or gravitational instabilities in the disc (see e.g. Boss 1998,
2001). In both cases the planets are likely to have formed at larger
distances from the central star than observed.

Orbital migration due to gravitational interaction between the
planet and the gaseous disc is a possible mechanism to bring
planets to a close orbit. The tidal interaction between a planet
and a gaseous disc was studied before the discovery of extraso-
lar planetary systems by Goldreich and Tremaine (1979, 1980) and
Lin and Papaloizou (1979, 1986a,b). In the linear approximation
the planet excites waves at the Lindblad resonances that deposit
angular momentum in the disc. The flux of angular momentum has
different signs in the inner and outer discs causing the orbital mi-
gration of the planet.

Ward (1997) proposed that two different types of planetary
drift exist. Type I migration occurs when the planet mass is small
and migrates relative to the disc with a rate proportional toits mass
and the surface density of the disc. This migration is quite fast and
the orbital decay timescale of the order of 105 years is comparable
to the formation timescale of a giant planet by planetesimalaccu-
mulation. In type II migration the planet is massive enough to open
a gap in the disc. The planet is then locked to the viscous evolu-
tion of the disc and its migration rate will be determined by the
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strength of the viscosity. The estimated timescale for typeII migra-
tion is one or two orders of magnitude larger than the type I mi-
gration timescale for the same planetary mass. Type II migration is
believed to be responsible for the presence of planets at short orbital
distances (Trilling et al. 2002; Udry et al. 2003). Numerical simu-
lations of planet migration in a viscous disc (see e.g. Nelson et al.
2000; D’Angelo et al. 2003) confirm the inward migration of the
planet on the viscous time-scale predicted by linear theoryfor both
accreting and non-accreting planets.

The nonlinear interaction between disc and planet cannot be
fully described analytically or reproduced in laboratory experi-
ments. Therefore, multidimensional hydrodynamical simulations
of protoplanetary discs with embedded planets during many or-
bital periods are necessary to understand the formation andevo-
lution of extrasolar planetary systems. However, some differences
are found in the simulations depending on the numerical algo-
rithm employed. The spiral waves generated around the planet may
be stationary in the co-rotating frame (e.g. ZEUS-based results
of Lubow et al. 1999). Other higher-order hydrodynamical codes
show time variability of the flow in the spiral arms propagating
along the shock. The quasi-periodic disturbances in the shocks have
important implications for the formation and evolution of vortices
along the edges of the gap opened by the planet. In some simula-
tions wavy structures and vortices are observed at the edge of the
gap opened by the planet which interact with the shocks (see e.g.
Nelson and Benz 2003). In this paper, we have used different algo-
rithms presently in use in the astrophysical community to study the
planet-disc system in a simple but meaningful case.

3 SETUP DESCRIPTION

We examined the gap opening by a giant planet in an infinitesimally
thin disk with a constant surface density. The numerical setup was
defined in the web2 where interested modelers were invited to par-
ticipate in the comparison.

The planet’s gravitational potential was given by the formula

φ =
−µ√

r2 + ε2
(3)

wherer is the distance from the planet andε is the gravity soften-
ing. The simulations were run with two different softening coeffi-
cients:

ε1 = 0.2rL (4)

whererL = (µ/3)1/3 is the size of the Roche Lobe of the planet,
and the larger value

ε2 = 0.6Hp, (5)

with Hp the disc scale height at the planet location. The second
softening was mainly introduced to mimic the torque cut-offdue
to the effect of the disc vertical distribution. The resultsdiscussed
in this paper concern mostly the calculations that use the larger
softening. In our simulations, the self-gravity, energy transfer and
magnetic fields in the gaseous disc were not considered.

The mass relation between the planet and the star was chosen
so that the reduced mass has the valuesµ = Mp/(M* +Mp) = 10−3

and 10−4, corresponding to roughly Jupiter and Neptune masses
when the star massM* = M⊙. The planet was kept in a circular

2 http://www.astro.su.se/groups/planets/comparison/

orbit at approximately semi-major axisa = 1 ignoring the effect of
the gravitational torques on the planet. The position of theplanet
in the cell with respect to the cell’s corner is given in Table1.
The computations were performed in the radial domain[0.4a,2.5a]
to study the influence of the planet in a sufficiently large fraction
of the disc. In the cylindrical grid codes, the number of cells in
the radial and azimuthal directions werenr ×nφ = (128,384) with
uniform spacing in both dimensions. Therefore, the cells around
the planet position were approximately square. Several tests were
done with different schemes at resolutionnr ×nφ = (256,768) and
nr ×nφ = (512,1536) to check the convergence of the results. The
polar coordinates schemes used a corotating reference frame. The
centre of the frame was not specified in the problem description
and codes with frames centred in the centre of mass (CM) and cen-
tral star were used. The star position was fixed atr,φ = (0,0) and
the planet atr,φ = (1,0) in co-rotating coordinates, where the az-
imuthal range was[−π,π]. The Cartesian schemes FLASH-AP
and PENCIL were run on a uniform non-rotating grid at resolution
nx×ny = (320,320), andnx ×ny = (640,640). The computational
domain was[−2.6a,2.6a]× [−2.6a,2.6a]. The unit of time used in
the simulations was the orbital period ata = 1 which is defined as

Pp = 2π
[

a3

G(M* +Mp)

]1/2

= 2π, (6)

whereG= 1 andM* +Mp = 1. The angular frequency of the planet
wasΩp = 1 in our units.

3.1 Initial conditions

The modelled disc was 2-dimensional so that the vertically inte-
grated quantities were solved. The initial surface densitywas con-
stant and given by the expression

Σ0 = 0.002
M∗
πa2 (7)

wherea is the semi-major axis of the planet. We assume that the
heat generated by viscous dissipation and tidal forces in the disc is
radiated away, so the disc remains geometrically thin. The initial
angular velocity was fixed to the local Keplerian frequency at the
given radial position and the radial velocity was zero initially.

We used the standard sound speed profile of a slightly flaring
solar nebulaH/R= cs/vK = 0.05, whereH is the disc scale height,
R the distance from the centre of the star,vK the local Keplerian
velocity, andcs the isothermal sound speed defined as

c2
s =

∂ p
∂Σ

. (8)

which has a dependence on radiuscs ∝ r−1/2. This corresponds
to a locally isothermal equation of state with a profileT(r) ∝ r−1

maintained through the simulation. The disc height at the planet
location remains constant during the opening of the gap.

The planet mass was gradually increased during the first 5 or-
bital periods using the expression

M(t)
Mp

= sin2
(

πt
10Pp

)
(9)

to avoid the the appearance of strong shocks seen when the planet
is introduced instantaneously. The gas accretion from the disc onto
the planet was ignored. This situation can be realistic in the case
when the planet’s atmosphere fills the Roche lobe and no further
accretion is allowed.
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The problem was originally proposed to be run with no artifi-
cial viscosity or as low as possible as allowed by the code. Some of
the used codes include artificial viscosity to smooth out theshock
fronts and prevent unphysical results as described in Section 4. We
performed simulations for each planet mass including a physical
viscosity that generates a stress tensor with a turbulent viscosity co-
efficientν (see e.g. Landau and Lifshitz 1959; Kley 1999). The val-
ues of the kinematic viscosity used in our simulations wereν = 0
and 10−5 in units wherea = 1 andG(M* + Mp) = 1. The simula-
tions were run typically during several hundred orbital periods for
each of the planet masses and viscosity coefficients.

3.2 Boundary conditions

To completely define the problem, we describe the implemented
boundary conditions. The disc was considered as an isolatedsystem
with no mass inflow. We used solid boundary conditions with wave
killing zones next to the boundaries to reduce wave reflection in the
cylindrical coordinates codes. In the polar coordinates schemes, the
damping regions were implemented in the radial ranges[0.4a,0.5a]
and [2.1a,2.5a], where the following equation was solved after
each timestep:

dx
dt

= −x−x0

τ
R(r) (10)

wherex represents the surface density and velocity components,τ
is the orbital period at the corresponding boundary andR(r) is a
parabolic function which is one at the domain boundary and zero at
the interior boundary of the wave killing zones. This wave damping
condition does not conserve mass, but the mass loss is very small
as shown below.

The grid-based codes in Cartesian coordinates implemented
the same wave killing condition as the polar codes in the ring
[2.1a,2.5a]. Tests were done including the damping condition in
the region[0.4a,0.5a] although this is not necessary since there
is no inner solid boundary. There was free outflow in the x and y
boundaries in the Cartesian implementations.

Note that the SPH codes implement different boundary condi-
tions using rings of virtual particles as described in section 4.

3.3 Output data

2-D snapshots of the density and velocity components were output
at 2, 5, 10, 20, 50, 100 and 200 orbital periods for grid codes,al-
though in some cases the simulations were run up to 500 periods.
All the physical quantities were given at the cell centres.

In the case of SPH codes the output quantities at the previ-
ous times were particle positions, velocity components, smoothing
length and mass. The particles were projected to a 2-dimensional
cylindrical grid with the resolutionnr × nφ = (128,384) to com-
pare directly with the lower resolution results from the Eulerian
grid codes. The associated kernel for each particle used internally
by our codes was the third order spline function introduced by
Monaghan and Lattanzio (1985) with a multiplicative coefficient
corresponding to a 2-dimensional simulation. The density at a given
point was calculated by interpolation with the spline kernel using
the expression

〈ρ(ri)〉 =
N

∑
j=1

mjW(|ri −rj |,hj) (11)

wheremj is the mass of the particle,W(r,hj) is the spline kernel

and|ri − rj | is the distance from the cell centre to the given parti-
cle. The smoothing lengthhj has different values for each particle.
In a similar manner, the velocity components were interpolated to
the grid with the kernel function and normalized with respect to
the integrated kernel. The resolution element of the SPH models
is given by the smoothing length of the particles. For the number
of particles used in the SPH calculations, the effective resolution
is similar to the number of cells in the hydro models at the afore-
mentioned resolution, were the particles distributed in anequiva-
lent spatial domain. SPHTREE uses a smaller smoothing length
than PARASPH and therefore should have a slightly better spatial
resolution in our calculations.

The azimuthally averaged density was obtained as

Σ̂ =
1

2π

∫ 2π

0
Σdφ (12)

Slices of the surface density were taken at the planet position and
Lagrangian points in the radial and azimuthal directions.

We calculated the vortensity or potential vorticity, defined as
the ratio of vorticity and surface density

ζ =
(∇×v)z

Σ
. (13)

In the frame rotating with the planet, the vortensity is given by the
expression(∇×v+2Ωp)/Σ, whereΩp is the orbital frequency of
the planet.

The gaseous disc interacts gravitationally with the planet
by means of the torques generated by the spiral arms (see e.g.
Goldreich and Tremaine 1979; Papaloizou and Lin 1984). Every
few timesteps the contributions from the inner disc excluding the
Hill sphere, outer disc excluding the Hill sphere and the torque
from the material between 0.5 and 1 Hill radius to the torque are
recorded. The disc mass interior and exterior to the planet orbit
was also obtained with the same output frequency.

The torques were calculated in units wherea = 1, P = 2π and
M* = 1−µ integrating over the corresponding region. In the case
of a 2-dimensional disc the torque has only a vertical component
which is given by

Tz = GMp

∫
Σ rp ×

re

(r2
e + ε2)3/2

rdrdφ (14)

whereΣ is the surface density,rp is the planet position,re is the
distance between the planet and the fluid element.

We performed Fourier analysis of the torque data to under-
stand the cause of the observed variability. We used a Welch win-
dowing function (Press et al. 1992) to smooth the deviation be-
tween the initial and final amplitudes in the time series.

4 DESCRIPTION OF THE CODES

We will now discuss the codes used in the comparison. Even within
the restricted field of astrophysical fluids, there are many different
algorithms for computing flows. There are then different imple-
mentations of the same algorithm. We will therefore start with a
discussion of the general principles of various types of codes pre-
sented in this paper, and then go on to detail particulars of each
code used. This is not meant to be a general review of all the types
of codes used to conduct numerical experiments in astrophysics.
For more detailed information, the reader should refer to any of
the plethora of books on the subject (e.g. Laney 1998; Toro 1999;
LeVeque 2002).

The parameters of each code are given in Table 1, including
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Table 1. Summary of the parameters used in all codes. Column 2: name ofthe users of the code; col. 3: reference to detailed code description; col. 4: numerical method (upwind, high-order
finite-difference, shock-capturing or SPH); col. 5: Courant number used; col. 6: type of artificial viscosity used (none, von Neumann-Richtmyer, tensor or scalar); col. 7: reference frame of
hydrodynamic codes (corotating or inertial); col. 8: centre of reference frame (centre of mass of star-planet system orprimary star); col. 9: position of the planet in the cell (centre, corner,
arbitrary or coordinates with respect to the cell’s corner in units of the radial and azimuthal stepsdr anddφ ); col. 10: processor; col. 11: approximate execution time on a single processor in
hours per 100 orbits.

Name Users References Method Courant Art. visc. Frame Centre Planet Processor TCPU (hr)

NIRVANA -GDA G. D’Angelo 1 Upwind 0.5 none corot. CM corner Power5 1.65 GHz 4
NIRVANA -GD G. Dirksen 1 Upwind 0.67 none corot. CM (arb.,0) P4 2.8 GHz 6
NIRVANA -PC P. Cresswell 1 Upwind 0.5 none corot. primary (0.29,0) P42.4 GHz 11
RH2D W. Kley 2 Upwind 0.75 1.0 (bulk) corot. primary (arb.,0) P4 3 GHz 3.4
GLOBAL S. Fromang 3 Upwind 0.5 1.0 corot. primary (arb.,0) Xeon 3 GHz 16
FARGO F. Masset 4,5 Upwind 0.5 2.0 (vN-R) corot. primary (0.57,0.5) P4 2.8 GHz 1.25
GENESIS A. Pierens 4,5 Upwind 0.5 1.0 (tensor) corot. primary centre P4 2.8 GHz 1
TRAMP-VAN LEER H. Klahr & W. Kley 6 Upwind 0.4 1.1 (vN-R) corot. CM arb. Opteron 2 GHz 16
PENCIL W. Lyra 7 High-order fin.-diff. 0.4 1.0 (bulk) inertial CM arb. P4 2.4 GHz 36
AMRA P. Ciecielag & T. Plewa 8 Shock-capturing 0.8 none corot. primary (0.57,0) Xeon 3 GHz 21
FLASH-AG A. Gawryszczak 9 Shock-capturing 0.8 none corot. primary (0.57,0.5) Athlon 2 GHz 42
FLASH-AP A. Peplinski 9 Shock-capturing 0.7 none inertial CM arb. Athlon 1.8 GHz
TRAMP-PPM H. Klahr 10,11 Shock-capturing 0.8 none corot. primary arb. Opteron 2 GHz 28
RODEO S-J. Paardekooper & G. Mellema 12 Shock-capturing 0.8 none corot. primary arb. Athlon 1.7 GHz 25
JUPITER F. Masset 13 Shock-capturing 0.7 none corot. primary (0.57,0.5) P4 2.8 GHz 15.3
SPHTREE K. Rice 14 SPH none bulk + shear - CM arb. Opteron 1.8 GHz 10
PARASPH C. Schäfer & R. Speith 15 SPH none bulk - CM arb. Opteron 2 Ghz 250

References: 1: Ziegler and Yorke (1997);2: Kley (1989);3: Hawley and Stone (1995);4: Masset (2000a);5: Masset (2000b);6: Klahr et al. (1999);7: Brandenburg and Dobler (2002);
8: Plewa and Müller (2001);9: Fryxell et al. (2000);10: Blondin and Lufkin (1993);11: Colella and Woodward (1984);12: Paardekooper and Mellema (2006);13: Pember et al. (1995);
14: Benz (1990);15: Schäfer et al. (2004).
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Table 2. Codes that were run for the lower resolution runs of the setups
defined in Section 3. The grid size for the Eulerian codes wasnr × nφ =
(128,384) for the cylindrical grid codes andnx × ny = (320,320) for
FLASH-AP and PENCIL. The number of particles was 250 000 in SPH-
TREE and 300 000 in PARASPH.

Jupiter Jupiter Neptune Neptune
Codes inviscid viscous inviscid viscous

NIRVANA -GDA × × × ×
NIRVANA -GD × × × ×
NIRVANA -PC × × × ×
RH2D × × × ×
GLOBAL × × × ×
FARGO × × × ×
GENESIS × × × ×
TRAMP-VAN LEER × ×
PENCIL × ×
AMRA × × × ×
FLASH-AG × × × ×
FLASH-AP × × × ×
TRAMP-PPM × ×
RODEO × × × ×
JUPITER × × × ×
SPHTREE × ×
PARASPH × × × ×

Table 3. Codes that were run at resolutionnr ×nφ = (256,768) and equiv-
alent resolutions for the Cartesian grid and SPH schemes.

Jupiter Jupiter Neptune Neptune
Codes inviscid viscous inviscid viscous

NIRVANA -GD ×
NIRVANA -PC × × ×
AMRA × ×
FLASH-AP × × × ×
PARASPH ×

references in which the algorithms are described in detail.Table 2
shows which codes were run for the low resolution defined tests.
In Tables 3 and 4 we show the schemes that were run at higher
resolution.

4.1 Grid Based Codes

As the name implies, grid based codes cover the computational vol-
ume with a set of grid points at which the various flow variables
(velocity, density etc.) are computed. The mesh geometry (conven-
tionally orthogonal, although this is not absolutely required) can be
chosen to reflect the underlying symmetry of the problem. This of-
ten leads to a reduction in the number of grid cells required for
a particular problem, and a corresponding cut in computational
time. The codes used in our problem use a reference frame cen-

Table 4. Codes that were run at resolutionnr ×nφ = (512,1536).

Jupiter Jupiter Neptune Neptune
Codes inviscid viscous inviscid viscous

NIRVANA -GD ×
RH2D ×
FARGO × × × ×

tred in the centre of mass or primary as indicated in column 8 of
Table 1. All the simulations centred on the primary include the indi-
rect terms in the potential. For astrophysical (compressible flow at
high Reynolds number) flows, two different approaches to solving
the fluid equations are generally used. However, before we describe
these, some general points should be noted.

The most important of these is the Courant-Friedrichs-Lewy
(CFL) condition. Simply stated, information must not travel more
than one grid cell per timestep (see, e.g. Press et al. (1992)for
a mathematical derivation). In a hydrodynamics code, this trans-
lates into a restriction on the timestep, based on velocity and sound
speed (some authors, e.g. Edgar and Clarke (2004), have alsoadded
an acceleration condition when appropriate). Violation ofthe CFL
condition leads to unphysical effects, as causality is violated. When
we refer to the “Courant number” in the descriptions below, we are
describing an extra safety factor, beyond the formal CFL condition
itself. Note, however, that the CFL condition only applies to time-
explicitcodes. Implicit solvers are not restricted by it, but no results
based on such a code were submitted to us.

Next is the extension to multi-dimensions. Most algorithms
for solving the equations of hydrodynamics have been developed
for one dimensional flow. The conventional method for using aone
dimensional algorithm in multiple dimensions is Strang splitting
(Strang 1968): solve the 1D equations along each row of cells(the
x1 direction), then solve along each column (thex2 direction), using
the updated values from thex1 sweep. Formally, thex1 step should
be split in two as1

2x1 → x2 → 1
2x1, but most codes do a full step in

each direction and alternate which is done first (this is sometimes
called “Godunov splitting”). The Strang approach makes orthogo-
nal co-ordinates highly desirable. To minimise the truncation errors
this approach produces, the grid cells must be kept locally square.

Most codes presented here use a rotating polar grid. For these,
there is an extra subtlety: the treatment of the Coriolis force. As is
conventional in fluid dynamics, the simple and obvious way toin-
clude this (as an extra force) leads to incorrect angular momentum
transport. Instead, the angular momentum approach of Kley (1998)
must be used. On reflection, this is unsurprising: the Coriolis force
simply enforces the conservation of angular momentum in a rotat-
ing frame.

Although not relevant to the comparison problem itself, many
of the codes here can make use of refined meshes. High resolution
is always desirable, but computationally expensive. To concentrate
grid cells where they are needed, patches of the grid may be cal-
culated at higher resolution, and the results communicatedback to
the coarser parent grid. Patches can themselves be patched,giving
the potential for extremely high resolution. If the patchesare de-
termined at the start of a calculation, such a code is said to be of
the ‘nested grid’ type. However, some codes can dynamicallyadd
and remove patches. This is known as adaptive mesh refinement
(AMR). For this comparison, we have chosen not to use refined
meshes. This is in the interests of simplicity, since there are a vari-
ety of algorithms for performing the refinement, and we are already
comparing a large number of codes. However, we would encourage
other workers in the field to compare refinement methods.

4.1.1 Upwind Methods

The upwind codes used in this comparison work by discretising
the appropriate version of the Navier-Stokes equations, and solving
that. These codes use the technique of operator splitting, and some
operators are discretised in a finite difference manner, while others
are solved with a finite volume method. For this reason, codessimi-
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lar to those we shall now discuss are sometimes refered to as ‘finite
difference/volume’ schemes, or even just ‘finite difference.’ We es-
chew this epithet, since almost any grid code could be described as
‘finite difference’ at some level.

In a typical operator split scheme, each timestep is split into
two phases. During thesourcestep, the velocity is updated using
the source terms in the Navier-Stokes equations (pressure gradi-
ents, gravity etc.). In thetransport step, these velocities are then
used to advect (thev ·∇v terms) the other quantities. This is usu-
ally done conservatively using the integral form of the equations
(integrated over a volume - hence the name). During the advection
step, second order ‘upwinding’ is used (interpolation based on ve-
locities), to ensure that shocks remain sharp. Some sort of artificial
viscosity is generally required to stop post-shock oscillations mak-
ing the code unstable.

These codes usually use a staggered mesh, to improve the
order of their differencing. Scalar variables (such as density) are
stored at zone centres, while vector quantities are stored at the faces
(e.g.v1 is stored at the centre of thex1 face).

Codes like these are often described as being ‘ZEUS-like’ -
a reference to the ZEUS code of Stone and Norman (1992). Al-
though that paper provides an excellent description of the methods
used, the epithet ‘ZEUS-like’ does not generally mean “derived
from ZEUS.” Rather, they are based on the same or similar algo-
rithms, and ZEUS happens to be the best known implementation
of these.

4.1.1.1 The NIRVANA code In this comparison, three sets of
results were submitted which made use of the NIRVANA code of
Ziegler and Yorke (1997). All of the following codes are based on
the original version of NIRVANA , which was not publically re-
leased. Each of the codes was enhanced from the original code
base by different groups over a number of years. Hence, variations
between the NIRVANA codes highlight how even the same basic
algorithm can vary. Different Courant numbers were also used -
NIRVANA -GD used 2/3, while NIRVANA -GDA and NIRVANA -PC
used 1/2.

4.1.1.2 The RH2D code The RH2D code is two-dimensional
mixed explicit/implicit 2nd order upwind algorithm on a staggered
grid. The advection algorithm is based on the monotonic trans-
port scheme by van Leer (1977). The RH2D code can treat radi-
ation transport in the flux-limited diffusion approximation, and in-
cludes the full tensor viscosity with dissipation. In contrast to some
other codes the velocity variables that are evolved in RH2D are
radial v andangular velocity Ω. Both radiation and viscosity can
be solved implicitly to avoid possible time-step limitations. We re-
fer the reader to Kley (1989) for a full description of the code. For
the purpose of the present calculations the radiation module was
replaced by a locally isothermal equation of state. The viscosity
was solved explicitly. The formulation of the equations, inparticu-
lar the treatment of the physical and artificial viscosity inthe stress
tensor components, has been described with respect to the embed-
ded planet problem in detail by Kley (1999).

4.1.1.3 The GLOBAL code The GLOBAL code
(Hawley and Stone 1995) is derived from ZEUS
(Stone and Norman 1992). The Courant number was 0.5, and
an artificial viscosity co-efficient of 1.0 was required to stabilise
wave propagation in the disc.

4.1.1.4 The FARGOcode FARGO is a simple 2D polar mesh
code dedicated to disc planet interactions3. It is based upon a stan-
dard, ZEUS-like hydrodynamic solver, but owes its name to the
FARGO algorithm upon which the azimuthal advection is based
(Masset 2000a,b). This algorithm avoids the restrictive timestep
typically imposed by the rapidly rotating inner regions of the disc,
by permitting each annulus of cells to rotate at its local Keple-
rian velocity and stitching the results together again at the end of
the timestep. The use of the FARGO algorithm typically lifts the
timestep by an order of magnitude, and therefore speeds up the
calculation accordingly. The mesh centre lies at the primary, so in-
direct terms coming from the planets and the disk are included in
the potential calculation. The Courant number was 0.5, and asec-
ond order artificial viscosity ofC2 = 2 (cf equations 33 and 34 of
Stone and Norman) was used.

The standard boundary conditions prescribed in the test prob-
lem were used. In addition, the dependence of the results on the
damping condition was tested using a slightly different boundary
were a transmitted wave boundary condition was used. The pitch
angle of the wake at the inner and outer boundary was valuatedus-
ing the WKB approximation. The content of the border ring was
then copied into the ghost ring, properly azimuthally shifted by the
amount dictated by the pitch angle. This technique is very efficient
at removing any reflected wave and yields similar results to the
standard boundary condition defined in Section 3.2.

4.1.1.5 The GENESIScode GENESIS is a 2D code which
solves the fluid equations using a upwind method with a time-
explicit, operator-splitting procedure. The FARGO algorithm (see
description above) is applied to avoid the timestep limitation at the
inner edge of the disc. Because of this, the code does not alternate
radial and azimuthal integrations. Artificial viscosity ishandled by
using a bulk viscosity in the viscous stress tensor (Kley 1999).

4.1.1.6 The TRAMP-VAN LEER code This is a 3D version of
RH2D (see above) with the same second order van-Leer scheme
(similar to that used in the ZEUS and NIRVANA codes). Klahr et al.
(1999) provide a description. The fact that the code is intrinsically
3D explains why it performs two times slower than the pure 2D ver-
sion RH2D4. We use a moderate value of 1.1 for the von Neumann-
Richtmyer type viscosity. The implementation works in the corotat-
ing frame where the centre of mass is the centre of the coordinate
system. Hence no extra acceleration terms are necessary.

4.1.2 High-Order Finite-Difference Methods

4.1.2.1 The PENCIL code Pencil is a non-conservative finite-
difference code that uses sixth order centred spatial derivatives and
a third order Runge-Kutta time-stepping scheme, being primarily
designed to deal with compressible turbulent magnetohydrodynam-
ical flows5. Being high-order, Pencil needs viscosity and diffusiv-
ity terms in order to stabilize the numerical scheme. For this reason,
we could not perform inviscid runs.

The code is intrinsically 3D and Cartesian, structured in a
cache-efficient way. The domain is tiled in the y and z direction for
parallelization, with the original 3D quantities being split into 1D

3 FARGO is available at http://www.maths.qmul.ac.uk/∼masset/fargo/
4 The remaining factor of two comes from the roughly two times smaller
Courant number in TRAMP-VAN LEER
5 PENCIL is available at http://www.nordita.dk/software/pencil-code/
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arrays -pencils- in the x direction, hence the name of the code. The
equations are solved along these pencils in the x direction,which
leads to the convenient side-effect that auxiliary and derived vari-
ables use very little memory as they are only ever defined on one
pencil. By calculating an entire timestep in the x-direction along
the box, Pencil can achieve a speed-up of∼60% on typical Linux
architectures.

This is the first time Pencil has been applied to the embedded
planet problem.

4.1.3 Shock-Capturing Methods

The other scheme for grid-based astrophysical fluid flows in com-
mon use is that proposed by Godunov (1959). Such schemes make
use of the fact that there is an analytic solution to the 1D shock
tube problem: the so-called Riemann problem. Godunov’s original
scheme treated each cell as piecewise-constant (i.e. variables such
as density were assumed to be constant throughout the cell),giving
a sharp shock at each interface. Colella and Woodward (1984)im-
proved Godunov’s method by using parabolic interpolation,giving
the ‘piecewise parabolic method’ (PPM) which is the most com-
mon implementation in use today. Implementations of PPM can
be in Eulerian or Lagrangian form. For the purposes of the inter-
polation, all values are stored at the cell centres (cf the staggered
grids mentioned above). Shock-capturing codes include thepres-
sure gradient in the basic solver. Since solving the full Riemann
problem is computationally expensive, many codes use an approx-
imate solver. Furthermore, to deal with strictly isothermal flows, a
special isothermal Riemann solver must be written, since the con-
ventional one involvesγ −1 denominators.

Shock-capturing schemes do not usually require any artifi-
cial viscosity to ensure stability (sometimes authors willinclude
a small artificial viscosity to prevent post-shock oscillations, but
these oscillations do not usually threaten the stability ofthe code).
Although this is welcome, it should be noted that most implemen-
tations contain other ‘artificial’ parts (such as slope limiters used in
the interpolations), and any user of a code must bear these inmind.

4.1.3.1 The AMRA code AMRA is an AMR code developed
by Plewa and Müller (2001). For the disk-planet interaction prob-
lem we used the HERAKLES solver which is an implementation of
the PPM algorithm. HERAKLES was derived from PROMETHEUS

(Fryxell et al. 1989) and provides all the functionality of its prede-
cessor. The original Riemann solver for complex equations of state
was replaced by a much simpler non-iterative (but still exact) ver-
sion suited for isothermal flows (Balsara 1994). All problems were
computed with Courant number of 0.8. The planet was placed inthe
corner of a grid cell, to make the grid layout around it as symmetric
as possible.

4.1.3.2 The FLASH code The FLASH code (Fryxell et al.
2000) is an AMR code implementing the PPM algorithm in its
Direct Eulerian form.6 The Riemann solver was ported from the
AMRA code. Two sets of results used FLASH, and we shall refer
to these as FLASH-AG and FLASH-AP

The FLASH-AG code was based on release 2.3 of FLASH.
We patched the code to work as accurately as possible in polarco-
ordinates, particularly enforcing the conservative transport of an-

6 FLASH is available at http://www.flash.uchicago.edu/

gular momentum. The Courant number was 0.8 in the simulations
presented here.

Instead of running in polar co-ordinates, the FLASH-AP
version of the code used the original Cartesian formulationof
FLASH. The grid cells were sized to give the same radial res-
olution, although since the grid went tor = 0, the grid size had
to be larger than in the cylindrical schemes to achieve the same
resolution. The code was run at resolutionnx × ny = (320,320)
andnx ×ny = (640,640). The boundaries were open and there was
free gas flow inside 0.4a. The damping condition described inSec-
tion 3.2 was applied on the outer boundary ring but not in the inner
disc. The Cartesian grid was fixed in space, and the planet andstar
were free to move over it (integrated using a simple Runge-Kutta
method). A Courant number of 0.7 was used in the simulations.

4.1.3.3 The RODEO code This code uses the approximate
Riemann solver suggested by Roe (1981), and extended by
Eulderink and Mellema (1995) to general non-inertial, curvi-linear
coordinate systems. The limiter function used is “superbee”, and
unlike PPM-type approaches, limits the characteristic variables,
rather than the primitive variables. The code uses an AMR scheme
similar to PARAMESH (used in the FLASH code). The source
terms are handled through the so-called stationary extrapolation
method (Eulderink and Mellema 1995), which ensures that phys-
ically stationary solutions remain stationary. The equation of
state was strictly isothermal. A full description can be found in
Paardekooper and Mellema (2006).

4.1.3.4 The JUPITERcode The JUPITER code is a nested
grid Godunov code, that can be used in Cartesian, cylindrical or
spherical geometry, either in 1D, 2D or 3D. The JUPITER code
uses a ‘two shock’ Riemann solver, which assumes that the two
waves leaving the interface are shockwaves (Toro 1999) (thecode
can also use a ‘two rarefaction’ solver, or a full iterative one). The
rest of the Riemann solver (the sampling of the Riemann fan) is ex-
act. Assuming that the two waves are shockwaves is not so bad as it
might first appear. Firstly, some initial Riemann statesdo give rise
to two shockwaves. Secondly, the differences from the full Rie-
mann solution are relatively small, so long as the contrast across
the interface is not extreme. In extra tests (not included here), the
differences between a ‘two shock,’ ‘two rarefaction’ and full Rie-
mann solver were found to be slight for our comparison problem.
The predictor step (which provides the left and right statesof the
Riemann problem at the zone interface) is a linear piecewisechar-
acteristic method using the monotonized centred slope limiter, and
which uses a slope splitting technique (Pember et al. 1995).The
full viscous stress tensor is conservatively implemented in the three
geometries. No artificial viscosity was required, and the Courant
number was 0.7.

4.1.3.5 The TRAMP-PPM code TRAMP-PPM is a La-
grangian remap7 PPM (Woodward and Colella 1984) code. It is
based on the routines provided in the VH-1 package, modified for
accretion disk simulations (Blondin and Lufkin 1993). The modifi-
cations involve adding the conservation of angular momentum and
equations to treat the evolution of internal energy. Here always the
full Riemann problem is solved iteratively and we approximate the

7 Cell boundaries are allowed to move during the advection step, and the
results are then interpolated back onto the fixed grid
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isothermal case withγ = 1+10−10. In the current isothermal sim-
ulations the PPM code does not use any artificial viscosity. This
implementation works in the corotating frame where the staris the
centre of the coordinate system, and hence explicitly incorporates
the extra acceleration terms due to the offset from the centre of
mass.

4.2 Particle Based Codes

Rather than trying to solve the equations of hydrodynamics on
a grid, a second group of codes decompose a fluid into small
packets of mass (particles), and then follow their evolution. The
method in most common use today is that of Smoothed Particle
Hydrodynamics (SPH), developed independently by Lucy (1977)
and Gingold and Monaghan (1977). We shall describe the basic
characteristics of SPH now. For a more detailed treatment, the
reader should consult Benz (1990); Monaghan (1992) and refer-
ences therein and thereto.

In SPH, each particle’s properties are spread (or smoothed)
over a small volume of space contained within a smoothing length,
h. For example, smoothing out the particle’s mass gives its contri-
bution to the density at each point in space. The smoothing function
(or kernel),W(r,h), is not constant, but increases towards the parti-
cle’s position (assumed to ber = 0). In the limith→ 0,W becomes
a δ -function, and perfect fluid behaviour is obtained (with an infi-
nite number of particles). A Gaussian would be a possible choice
for W, but compact kernels (whereW = 0 for r greater than some
rmax) are preferred for computational simplicity. Particles within
the range of the compact kernel are called the neighbours. When
appropriate to the problem, modern SPH codes will allow eachpar-
ticle to have its own smoothing length, chosen to keep the number
of neighbours constant (typically a few tens). The smoothing length
is also used to limit the timestep in a way similar to the CFL con-
dition mentioned above.

The major advantage of SPH is that its particle nature makes
it fully Lagrangian: there are no advective terms in the equations
of motion. This makes the codes more straightforward to write
and understand. Since high densities imply that more particles are
present,8 SPH naturally concentrates resolution in high density re-
gions. Good use can be made of this in collapse simulations (e.g.
Delgado-Donate et al. 2003).

However, there are disadvantages too. Foremost is the matter
of viscosity. SPH requires an artificial viscosity to prevent inter-
particle penetration, and this tends to make SPH codes quitedis-
sipative. Resolution can also be a problem in certain calculations.
For example, in the disc calculations presented here, most of the
particles are going to be in the outer portions of the disc, and not
doing very much. Also, the details of the gap are of most interest,
and SPH will have fewer particles there.

4.2.1 TheSPHTREEcode

This code owes its name to the tree used to locate particle neigh-
bours. The calculations presented here used 250 000 particles for
the disc, with the star and planet being point masses. SPH particles
that move to within an accretion radius of either the star or planet
are accreted (Bate et al. 1995) but in the case of the planet, once the
initial ramp up is complete, we do not allow its mass to increase. We

8 Although it is possible to let particle masses vary in SPH, itis not entirely
trivial to do so

use the standard SPH viscosity (e.g. Monaghan 1992), withα = 0.1
andβ = 0.2, but also can include the Balsara switch (Balsara 1995)
to reduce the shear component of the artificial viscosity (see also
Lodato and Rice 2004). A huge saving in computational time isob-
tained by using individual particle timesteps (Bate et al. 1995) with
the time-steps for each particle limited by the Courant condition,
a force condition (Monaghan 1992) and a Runge-Kutta integrator
accuracy condition.

4.2.2 ThePARASPHcode

ParaSPH is a parallelized (using MPI) smooth particle hydrody-
namics code. It follows the approach of Flebbe et al. (1994),solv-
ing the Navier-Stokes equation including the entire viscous stress
tensor. In contrast to the usual approach of an artificial viscosity of
Monaghan and Gingold (1983), we use an artificial bulk viscosity.
This allows for an accurate treatment of the physical shear viscos-
ity and for easy comparison to the grid code results, since a con-
stant kinematic viscosity coefficient can be modeled. Additionally
we use the XSPH device to prevent particles from mutual penetra-
tion (see e.g. Monaghan 1989) Variable smoothing lengths keep the
number of neighbours at 75. The time integration is performed us-
ing a fourth order Runge-Kutta-Cash-Karp integrator for both the
particles and the planet. The code is described in more detail in
Schäfer et al. (2004).

We do not implement exactly the boundary conditions de-
scribed in sect. 3.2. Instead we add virtual particles to thesimu-
lation. They are assigned all physical relevant quantities, such as
density, velocity and so on, but are kept in Keplerian orbit about the
star. By their interactions, the virtual particles preventthe SPH par-
ticles from escaping. For the calculations presented here,we used
300 000 SPH particles and 50 000 boundary particles.

5 RESULTS

In this section we present the results for each of the runs. The sim-
ulations are run for up to 500 orbital periods using the codesde-
scribed in Section 4. We compare the contours of surface density,
vortensity and averaged density profiles obtained in the numerical
calculations at several times. The time evolution of the grid mass
and gravitational torque acting on the planet are shown divided in
several contributions. The Fourier transform of the torques is cal-
culated to investigate the influence of vortices and disc eccentricity
on the torque acting on the planet. Several basic propertiesof the
disc-planet system are discussed based on the agreement between
the codes. In Section 5.5 we study how the difference betweenthe
codes change as the numerical resolution increases.

The comparative surface density and vortensity maps are
shown for each scheme in the order they appear in Section 4. Note
that TRAMP-PPM and TRAMP-VAN LEERwere only run for the
inviscid setups, while SPHTREE and PENCIL were run for the vis-
cous cases (see Table 2). Figure 1 shows the legend used in the
surface density profiles, mass and torque evolution plots inthis
Section. Different types of algorithms are plotted with different
linestyles.

5.1 Inviscid Jupiter

Firstly we consider the case of a Jupiter embedded in an inviscid
disc. The planet fixed at a given radius opens a deep gap in the
disc as predicted by standard theory (Lin and Papaloizou 1986a;



10 M. de Val-Borro et al.

Figure 2. Density contours in logarithmic scale after 100 orbits for the inviscid Jupiter simulations with overplotted theoretical prediction of the planetary
wake position. The codes are presented in the same order as inSection 4. The upwind methods’ results are displayed in the first panels followed by the
shock-capturing codes and lastly the particle based codes.The density scale ranges between−1.7 < log(Σ/Σ0) < 1.
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Figure 1. Common legend for the comparative plots in section 5. Upwind
codes are represented by solid lines, shock-capturing codes by dotted lines
and SPH codes by dashed lines.

Ward and Hahn 2000). The contrast between the initial density and
the deepest regions in the gap is about 2 orders of magnitude af-
ter 100 orbits. The planet forms strong trailing spiral armsdue
to the differential Keplerian rotation close to the Lindblad reso-
nances. Low density regions start to develop behind the shocks
where the fluid elements encounter the shock at high pitch an-
gle and change their trajectory. These regions travel in horseshoe
orbits in the corotation region clearing the gap as described in
Korycansky and Papaloizou (1996) and creating locked fluid areas
at the Lagrangian points inside the gap.

Figure 2 shows the density contours at 100 orbits for all the
codes. The dashed line represents the theoretical positionof the
shock wave predicted by Ogilvie and Lubow (2002). In the Jupiter
simulations, the planet mass is too high for this theoretical estima-
tion but it allows us to compare the spiral arms pitch angle between
the models. The planetary wakes have a high pitch angle compared
with the theoretical calculation next to the planet. There is a sec-
ondary shock in the Eulerian codes which starts near theL5 point
and has approximately the same opening angle as the theoretical
prediction. The secondary shock seems to be related with theden-
sity excess inside the gap behind the planet. In the outer part of the
disc, the pitch angle of the primary and secondary shocks arevery
similar. The existence of secondary shocks and the tightness of the
spirals depend primarily on the equation of state used (Kley1999).

There are two density enhancements in all grid-based models
located close to theL4 andL5 points at azimuthal distance∆φ =
±π/3 from the planet. In the SPH and FLASH-AP codes the gap
is almost completely clean. Theoretically, the calculation should
produce a nearly symmetric density distribution inside thegap at
both sides of the planet’s location for the case of a planet ina fixed
orbit, which is observed in our results.

Shock-capturing codes that use cylindrical coordinates such as
FLASH-AG, AMRA and TRAMP-PPM have filamentary struc-
ture visible in the disc and the gap possibly due to the high-order
scheme of the codes. The filaments can be produced by instabil-

ities generated locally on the corrugated spiral shock. Their an-
gle does not match the angle of the spiral shocks, so they can-
not be generated around the planet. In tests performed with the
FLASH-AG code, the filaments appear in high resolution calcu-
lations with larger amplitude but the same structure. The shock-
capturing codes using a different algorithm than PPM such as
JUPITER and RODEOdo not present filaments although they seem
to have more structure in the disc than the upwind methods’ results.

Figure 3 shows the vortensity contours calculated in the coro-
tating frame for the different models. There are bumps rotating
along the edges of the gap opened by the planet in the grid codes
in cylindrical coordinates which survive until the end of the sim-
ulations. The resolution does not permit us to determine whether
these density lumps have locally rotating flow around the core of
the vortex. The vortices are larger in the upwind schemes. Af-
ter 100 periods, most codes show a single bump rotating along
the outer edge, although NIRVANA -GD, AMRA, FLASH-AG
and TRAMP-PPM have two bumps which eventually merge by
200 periods. The knots are dominant in the AMRA, RODEO and
TRAMP-PPM simulations and generate their own spiral shocks
which extend into the disc. Most of the codes show one or several
smaller density excesses at the inner edge. The vortices in the outer
disc interact with the planetary shock and generate quasi-periodic
oscillations in the spiral arms. The oscillations could also be pro-
duced by instabilities near the planet that interact with the blobs
moving along the edge of the gap and are propagated along the
shocks. Reflected waves appear in the NIRVANA -GDA, RH2D,
GLOBAL and GENESIS codes (see Figure 3), despite the use
of wave killing boundaries.

In the PARASPH code the gap edges are less steep than in
the case of the grid based calculations possibly due to the artificial
viscosity. The planetary wake is weak and almost not visiblein the
inner disc.

The azimuthally averaged density profiles and their residuals
normalized by the disc mass after 100 orbits are plotted in Figure 4.
Note that the relevant portion of the domain is that between 0.5 and
2.1 a, since wave killing conditions are implemented next tothe in-
ner and outer boundaries. The depth and width of the gap is in good
agreement for the grid based models, with a slightly wider gap for
the AMRA code. FLASH-AP has a more depleted inner disc due
to the open inner boundary condition implemented in Cartesian co-
ordinates. The Cartesian geometry is also more diffusive inthis
problem and has a lower resolution close to the primary compared
with the polar coordinates codes. On the other hand, the shape of
the outer disc in FLASH-AP’s profiles is similar to the cylindri-
cal codes profiles. A wider gap is seen in the PARASPH simula-
tion. The oscillations seen in the outer disc are also consistent in
all the codes with a local maximum in the FLASH-AP profile at
2a. The density peaks close to the edges of the gap — specially in
the inner disk — have a larger spread which is associated withthe
size of the vortices. Shock-capturing codes have smaller vortices
in the outer edge than the upwind methods. The maximum at the
planet location is higher on average for the shock-capturing codes.
The PARASPH code has smoother profiles farther away from the
planet position due to the fact that the planetary wakes are smeared
out. The residuals of the averaged profiles divided by the disc mass
with respect to the mean value are shown in the bottom panel in
Figure 4. Since the total disc mass is different after 100 orbits for
the various models, the density profiles normalized by the disc mass
have in general a better agreement. However, the PARASPH and
FLASH-AP codes have most of the mass loss in the inner disc
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Figure 3. Vortensity contours in logarithmic scale after 100 orbits for the inviscid Jupiter models. The vortensity range is−0.5 < log(ζ ) < 2.
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Figure 4. The upper panel shows the normalized surface density profiles
averaged azimuthally over 2π after 100 orbits for the inviscid Jupiter runs.
In the lower panel, the differences between each model and the mean value
are shown in logarithmic scale as log(Σ/Mdisc)−〈log(Σ/Mdisc)〉, where the
angle brackets represent the mean. The surface density has been divided by
the disc mass at 100 periods to remove the dependence on the mass loss due
to the boundary conditions.

and this method may artificially increase their residuals inthe outer
disc.

We plot the density slices opposite to the planet after 100 or-
bits in Figure 5. The width and depth of the gap agree well for the
different codes but with a larger dispersion than in the averaged
profile. The amplitude of the peaks at the edges of the gap differ
since there are vortices which have different sizes and positions
with respect to the planet at a given time. On the other hand, the
size and the position of the wave crests agree within a few percent.

In Figure 6 the azimuthal cuts of the surface density maps at
the planet radius are displayed. There is a sharp density spike at
the planet position. The shape and prosition of the density bumps
at L4 andL5 is slightly asymmetric. The peak at the trailing La-
grangian pointL5 is larger than at the leadingL4 point for all Eu-
lerian codes, with more conspicuous peaks and larger asymmetry
in the shock-capturing schemes. In the FLASH-AP results there
are asymmetric bumps at the Lagrangian points in the beginning
of the simulation, but they have disappeared at 100 periods.In the
PARASPH calculation the gap is almost completely cleared and
no bumps at the Lagrangian points are observed. PARASPH has
also a smaller peak at the planet location.

The disc mass loss rate evolution is plotted in Figure 7 for
the Eulerian codes. The total disc mass is not conserved due to the
wave damping condition described in section 3.2. There is a larger
mass loss rate in the FLASH-AP code owing to the mass accre-
tion in the inner disc but it reaches an equilibrium value consistent
with the cylindrical codes at late times. Some codes gain mass at

Figure 5. Surface density profiles opposite to the planet position after 100
orbits for the inviscid Jupiter runs.

Figure 6. Surface density azimuthal slice at the planet radius after 100 or-
bits for the inviscid Jupiter calculations. The trailing Lagrangian pointL5 is
located at azimuth∼−1/3 and the leading Lagrangian pointL4 is at∼ 1/3
in the normalized azimuthal units.

the beginning of the simulation and start losing mass after about
10 orbits. The total mass after 200 orbits is reduced by about8%
in the AMRA and FLASH-AG codes which use shock-capturing
algorithms. Other codes like NIRVANA -GDA, NIRVANA -GD and
RH2D show a smaller mass loss of about 3%. The outer disc mass
decreases slowly and in some codes like JUPITER it remains al-
most constant during 200 orbits. During the first few orbits,when
the gap is not completely cleared, there is material flowing from
the outer to the inner disc perhaps due to the artificial viscosity.
The inner disc mass shows a strong decrease, especially in the
shock-capturing codes. Despite the spread in mass loss for different
codes, the surface density do not show strong variations between
the codes.

The waves excited by the planet deposit angular momentum in
the disc when they are dissipated. There is an initial smoothphase
where the torque increases in absolute value during the firstfew
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Figure 7. Evolution of the disc mass loss rate over 200 orbital periodsfor
the inviscid Jupiter simulations.

Figure 8. Profiles of total specific gravitational torque as a functionof ra-
dius after 100 orbits for the inviscid Jupiter simulations.

orbits while the planet is growing. Afterwards, the torquesstart to
display strong oscillations at the time when the vortices are cre-
ated. Vortices grow due to the steep gradients at the gap edges
and through interaction with the planetary wakes. We do not have
enough time resolution in the density snapshots to follow the vor-
tex formation and evolution. The mean value decreases slightly in
most codes until the point when the gap is completely clearedand
stays roughly constant up to the end of the simulation. The effect
of the large torque oscillations on the planet migration needs to be
studied with a free moving planet.

The torque from within the Roche lobe show significant dif-
ferences between the codes. The density has a local maximum at
the planet location which depends on the interpolation order of the
code, although the total mass inside the Roche lobe is similar. The
planet is not located in a cell’s corner in all codes and this causes
asymmetries in the mass distribution around the planet In addition,
the region close to the planet is not well resolved at our resolution.

Table 5. Averaged gravitational torques between 175–200 periods inunits
wherea = 1, P = 2π andM* = 1−µ for the Jupiter inviscid simulations at
the end of the simulations. The time is given in orbital periods of the planet.

Code Torque

NIRVANA -GDA −1.452354×10−5

NIRVANA -PC −1.512417×10−5

RH2D −1.930871×10−5

GLOBAL −1.550768×10−5

GENESIS −1.565123×10−5

TRAMP-VAN LEER −1.818716×10−5

AMRA −3.769203×10−5

FLASH-AG −7.014221×10−5

FLASH-AP −2.187462×10−5

RODEO −1.880762×10−5

JUPITER −2.721250×10−5

TRAMP-PPM 5.611237×10−6

In the following discussion, we compare the torques excluding the
contribution from the Roche lobe.

Figure 8 shows the profiles of the derivative of the total torque
excluding the Hill sphere with respect to the radius. The time de-
pendence of the vortices position with respect to the planetpro-
duces a rapidly changing torque. Therefore, the different codes
have different specific torque profiles at a given time. The varia-
tion appears close to the gap edges where most of the angular mo-
mentum is deposited. The differences are larger at the outeredge
position where the vortices are bigger than at the inner edge. On
the other hand, farther away from the planet position the torques
are remarkably similar for all the codes.

The time evolution of the gravitational torque acting on the
planet is shown in Figure 9 divided in inner, outer disc and to-
tal contributions. A running time average over 10 orbital periods
has been applied to the data to avoid large oscillations. Thetorque
contribution from the disc material inside the planet’s orbit gives a
positive torque on the planet which tends to drive the planetout-
wards in all models, while the torque from the material outside
the planet’s orbit pushes the planet towards the star. The outer disc
contribution is dominant and gives a total negative torque which
takes away angular momentum from the planet and would cause
inwards migration in case the planet were released. The torque or-
der of magnitude and sign agrees for all the codes after 200 orbits
except for TRAMP-PPM which has a value close to zero. The av-
eraged values at the end of the simulation are given in Table 5.

The power density spectra (PDSs) of the corresponding grav-
itational torque components are shown on the right hand sideplots
in Figure 9. The panels show the low frequency part of the power
spectrum in logarithmic scale. The semi-periodic oscillations asso-
ciated with vortices rotating along the gap edges are present in the
PDSs for models where blobs appear in the density maps next to
the gap. Several peaks appear in the outer disc PDS with frequency
corresponding to roughly 0.4 times the planet’s orbital frequency
with several harmonics. This frequency is the difference between
the planet’s orbital frequency and the angular velocity of the high
density regions moving next to the gap. Assuming that the density
lumps orbit the central star with Keplerian speed, the position of
the blob estimated from the PDS frequency is about 1.4a, in agree-
ment with the center of the blobs observed in the density maps. The
harmonics possibly appear because the potential of an extended
density blob is not sinusoidal and creates amplified multiple fre-
quencies. In some codes, there are several vortices next to the outer
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Figure 9. Torques time series for the inviscid Jupiter simulations smoothed over 10 periods and the corresponding normalized power density spectra in
logarithmic scale. The upper panels show the torque contribution from the inner disc, the middle panels show the torque from the outer disc and in the bottom
panels the total torque is plotted. In all plots the contribution from inside the Hill sphere is ignored to avoid numerical noise.

edge which perturb the planet with the same frequency but different
phase. In the inner disc contribution PDS, there are severalcodes
with peaks at about 0.7 times the planet’s orbital frequencyand its
harmonics. The estimated blob position is about 0.7a, which again

agrees with the center of the vortices observed next to the inner
edge of the gap in the density maps.

The PDSs of the torque from the material inside the Roche
lobe show high frequency quasi-periodic variations at about 20
times the planet orbital frequency. This high frequency oscillations



16 M. de Val-Borro et al.

Figure 12. The upper panel shows the surface density profiles averaged
azimuthally over the whole azimuthal range after 100 orbitsfor the viscous
Jupiter case. In the lower panel, the difference between each model and the
mean value is shown as defined in Figure 4.

may be caused by the circumplanetary disc which makes several or-
bits around the planet within the planet orbital period although the
region is poorly resolved at our resolution. There is a localmax-
imum in density inside the Roche lobe and the material gives a
leading contribution to the total torque acting on the planet.

5.2 Viscous Jupiter

The density contours for Jupiter in a disc with Navier-Stokes vis-
cosityν = 10−5 are shown after 100 orbits for all the codes in Fig-
ure 10. The planet opens a narrower gap in the disc in this case. The
flow is much smoother than in the inviscid calculation and theblobs
moving along the gap are not observed. The density enhancements
seen at the Lagrangian points inside the gap in the inviscid calcu-
lations are not present. The spiral arms generated by the planet are
stationary. The filamentary structure that appeared in the inviscid
Jupiter runs in the shock-capturing codes is reduced in amplitude.
The reduction is stronger in FLASH-AG and FLASH-AP results
than in AMRA which uses a different dissipation algorithm.

In Figure 11, we plot the vortensity for the viscous Jupiter
case. The maps are smooth compared with the inviscid simula-
tions and vortices are not visible in the logarithmic scale.Reflected
waves are visible in the NIRVANA -GDA, RH2D, GLOBAL and
GENESIS results despite the use of the wave killing zones.

In Figure 12 we show the azimuthally averaged density pro-
files and normalized residuals after 100 orbits. The depth and width
of the gap agree well for the grid codes with a shallower gap inthe
FLASH-AP code. The gap is wider and deeper in the PARASPH
simulation. The SPHTREE code has a small peak at the planet ra-
dius and the inner disc is depleted due to mass loss. An slightly

Figure 13. Surface density profiles opposite to the planet position after 100
orbits for the viscous Jupiter runs.

Figure 14. Surface density azimuthal cut at the planet position after 100
orbits for the viscous Jupiter runs.

asymmetric gap structure is observed in most codes with a deeper
dent outside the planet’s orbit. The oscillations in the outer disc
have disappeared in the grid codes or have been reduced consider-
ably by the viscosity. The differences of the averaged profiles with
respect to the mean value are shown in Figure 12.

We plot the surface density profiles atφ = π after 100 orbits
in Figure 13. The peaks at the edges of the gap agree well since
there are no vortices in the viscous runs and the spiral arms are
weaker. Due to the viscosity, the gap is narrower and shallower
than in the inviscid case. The shape of the spiral arms agree within
a few percent for the grid based codes. The SPH codes agree in the
general shape of the density profile but have weaker spiral waves.
SPHTREE has a density peak in the middle of the gap opposite
from the planet.

In Figure 14 we plot the azimuthal cuts of the surface density
maps at the centre of the gap. A sharp density spike is seen at the
planet position in all codes. The density bumps at the equilibrium
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Figure 10. Density contours after 100 orbits for the viscous Jupiter simulations. The dashed line is the estimated theoretical position of the planetary shocks.
The density range is again−1.7 < log(Σ/Σ0) < 1.
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Figure 11. Vortensity maps for the viscous Jupiter case after 100 orbits. The logarithmic scale is−0.5 < log(ζ ) < 2.
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Figure 15. Evolution of the disc mass loss rate over 200 orbital periodsfor
the viscous Jupiter case.

points inside the gap have disappeared. Most of the grid codes show
a constant density of about 15% of the initial value. PARASPH
has a lower density than the grid codes, while SPHTREE shows
a density about twice as large as the grid codes. The presenceof
oscillations in the SPHTREE azimuthal profile may be explained
because the number of particles is too small to resolve the gap. The
effective resolution after projection in the radial range[0.4a,2.5a]
is smaller than in the grid simulations since the radial domain ex-
tends until 10a and at the end of the simulation a significant fraction
of the particles has been accreted.

We plot the evolution of the disc mass loss rate in Figure 15.
There is less mass loss than in the inviscid Jupiter case due to the
weaker waves and the agreement in the loss rate is generally very
good. FLASH-AP has a larger mass decrease due to the open in-
ner boundary. PENCIL has a very small mass loss possibly due to
the freezing zones in the boundaries. The total mass loss after 200
orbits shows better agreement than in the inviscid case. Upwind
methods show a reduction of about 5% of the initial mass, while
RODEO, AMRA and FLASH-AG codes lose close to 8% of their
mass. During the first few orbits, there is again gas flow from the
outer to the inner disc when the gap is not cleared. The outer disc
mass decreases slightly for some codes while others presentan in-
crease of roughly 1%. There is a substantial decrease in the inner
disc mass with an agreement of approximately 10% between the
different models.

The amplitude of the torque oscillations are smaller compared
with the inviscid runs. There is again an initial stage wherethe
torque increases in absolute value while the planet mass is increas-
ing. The torques start to oscillate at about 10 orbits and later possi-
bly due to the formation of small vortices or eccentricity ofthe disc.
In most codes the oscillations decrease and become very small by
the end of the simulation.

In Figure 16 the profiles of the specific total torque exclud-
ing the Hill sphere are shown. The profiles show a much better
agreement than in the inviscid Jupiter simulations. In the viscous
case, vortices are not observed in the density maps after 100orbits
and the torque radial profiles are not time dependent. There is a
dominant contribution from the corotating region in the grid-based
schemes from the exchange of angular momentum with gas flowing

Figure 16. Profiles of total specific torque acting on the planet after 100
orbits for the viscous Jupiter case.

in horseshoe orbits, although the material inside the Rochelobe is
not considered. The outer disc gives a negative torque contribution
on the planet driving inwards migration and the inner disc produces
a positive torque that pushes the planet outwards. The profiles of the
polar coordinates codes agree within a few percent.

The time average of the torque acting on the planet and their
PDSs are shown in Figure 17. The outer disc torque contribution
is again dominant and gives a negative total torque. The total aver-
aged torques at the end of the simulation are shown in Table 6.
The PDSs of the different torque contribution are shown in the
right hand side panels in Figure 17. The plots show the low fre-
quency part of the PDSs in logarithmic scale. There is a peak at
0.3 times the planet’s orbital frequency and several multiples in the
outer disc PDS. In some models, there is also a small peak at the
same frequency in the PDS form the inner disc. This quasi-periodic
oscillations may be produced by vortices appearing during the first
orbits of the simulation and eventually removed by the viscosity.
Other possible explanations are asymmetry in the edge of thegap
or slight eccentricity of the disc.

The torque from the gas inside the Hill sphere presents again
a power spectrum with high frequency peaks at several times the
Keplerian frequency at the planet radius. The smoothing length is
close to half of the Hill radius and the resolution in the Roche lobe
is low to study the possible presence of a circumplanetary disc ro-
tating at high angular frequency.

5.3 Inviscid Neptune

The dip opened by Neptune after 100 orbital periods is much shal-
lower than for the Jupiter case. The surface density maps areplot-
ted in Figure 18 for a Neptune mass planet embedded in an inviscid
disc. The spiral arms created by the planet are significantlyweaker
than in the Jupiter calculations and are in better agreementwith the
theoretical prediction of the shock positions shown by the dashed
line. In the SPH simulations the shocks are extremely weak. There
are no overdense regions around the Lagrangian points inside the
gap in any of the calculations since the gap is not deep enough.
Along the edge of the gap there are several blobs in the AMRA,
RODEO and TRAMP-PPM results, which are smaller than in the
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Figure 17. Running time averaged torques for the viscous Jupiter simulations and the corresponding PDSs of the raw data. The plots are shown in the same
order as in Figure 9. All the figures exclude the Roche lobe contribution.

inviscid Jupiter calculations. The FLASH, AMRA and JUPITER
codes show ripples in the disc and the gap with lower amplitude
than in the inviscid Jupiter simulations.

The comparative vortensity maps in the corotating frame are
shown in Figure 19. Vortices moving along the gap are observed in
the grid codes, although they are smaller than in the Jupitercase.

The azimuthally averaged density profiles after 100 orbits are
plotted in Figure 20. The depth and width of the gap is again in
fairly good agreement for the Eulerian codes. FLASH-AG’s gap is
shallower than the other grid based codes. PARASPH has a wider
and deeper gap than the grid models and a depleted inner disc.The
gap profile of the Eulerian codes is slightly asymmetric withthe
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Figure 18. Surface density contours after 100 orbits for the inviscid Neptune simulations. The theoretical estimation of the spiral wakes is represented by the
dashed line. The density scale ranges between−0.4 < log(Σ/Σ0) < 0.3.
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Figure 19. Vortensity contours in logarithmic scale after 100 orbits for the inviscid Neptune calculations. The vortensity rangeis −0.1 < log(ζ ) < 1.
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Table 6. Averaged torques between 175–200 periods in units wherea = 1,
P = 2π andM* = 1−µ for the Jupiter viscous simulations.

Code Torque

NIRVANA -GDA −7.279010×10−5

NIRVANA -PC −8.591188×10−5

RH2D −7.895477×10−5

GLOBAL −5.424962×10−5

GENESIS −7.980679×10−5

PENCIL −1.265820×10−4

AMRA −7.269365×10−5

FLASH-AG −9.288739×10−5

FLASH-AP −6.681127×10−5

RODEO −1.061018×10−4

JUPITER −8.067247×10−5

Figure 20. Surface density profiles averaged azimuthally over 2π after 100
orbits for the inviscid Neptune runs are shown in the upper panel. The resid-
uals in the lower panel are defined as in Figure 4.

deepest part just outside of the planet radius. In the lower panel in
Figure 20, we show the residuals of the averaged profiles divided
by the disc mass with respect to the mean value.

In Figure 21 we plot the surface density atφ = π. The shape
and amplitude of the waves in the disc agree well for the different
codes outside the wave damping boundaries. There is a largerdis-
persion at the inner gap edge and in the middle of the gap for the
shock-capturing schemes. The gap is slightly asymmetric for the
majority of the codes.

In Figure 22 the azimuthal slices of surface density at the
planet position are shown. A large density peak is observed again at
the planet position for all the grid codes. The FLASH-AG, RODEO

and JUPITER density in the centre of the gap after 100 orbits
is close to the initial density with depressions next to the planet.

Figure 21. Surface density profiles opposite to the planet position after 100
orbits for the inviscid Neptune runs.

Figure 22. Surface density azimuthal slice at the planet location after 100
orbits for the inviscid Neptune calculations.

The rest of grid codes show a density decrease of about 10-20%.
PARASPH has the lowest density inside the gap with a decrease
of about 60% from the initial value.

Figure 23 shows the grid mass loss rate as a function of time
for the grid-based codes. All models show total mass loss dueto the
wave killing condition. The FLASH-AP code has mass loss in the
inner disc due to the absence of a solid inner boundary in Cartesian
coordinates but converges to a value of a few times 10−5 after 200
orbits. There is mass increase in the inner disc for some schemes in
the beginning of the simulation. This suggests that there isgas flow
trough the gap from the outer to the inner disc since in the Neptune
simulations the gap is shallower and the planet generates weaker
shocks. The artificial viscosity may cause the flow from the outer
to the inner disc. Another possible explanation is that the damping
wave condition near the inner boundary adds artificially angular
momentum to the disc.

We plot the profiles of the derivative of the torque with re-
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Figure 23. Disc mass loss rate evolution for the inviscid Neptune simula-
tions.

Figure 24. Specific torque profiles after 100 orbits for the inviscid Neptune
simulations.

spect to the radius in Figure 24. The agreement between the codes
is good compared with the inviscid Jupiter case, especiallyfor the
cylindrical grid hydrodynamical codes. The vortices do notperturb
the planet strongly and the specific torque radial profiles are sta-
tionary. The outer disc generates again a negative torque acting on
the planet and the inner disc gives a positive torque. At several Hill
radii away from the planet location the torques become negligible.

In Figure 25, the time average of the gravitational torques act-
ing on the planet and their associated PDSs are plotted. The total
torque after 200 periods agree within a factor 2 (see Table 7). up-
wind results show good agreement while the shock-capturingre-
sults have larger oscillations. The oscillations observedin the raw
data and PDSs may be produced by short-lived vortices appearing
during the first orbits which are not visible at later time in the den-
sity snapshots.

Table 7. Averaged torques at the end of the simulations in units wherea= 1,
P = 2π andM* = 1−µ for the Neptune inviscid simulations.

Code Torque

NIRVANA -GDA −5.601425×10−5

NIRVANA -PC −5.802065×10−5

RH2D −6.329492×10−5

GLOBAL −6.539345×10−5

GENESIS −5.645140×10−5

TRAMP-VAN LEER −5.078578×10−5

AMRA −8.154881×10−5

FLASH-AG −6.523340×10−5

FLASH-AP 1.055228×10−5

RODEO −1.234136×10−4

JUPITER −2.834292×10−5

TRAMP-PPM −5.742200×10−5

Figure 28. The upper panel shows the surface density profiles averaged az-
imuthally over 2π after 100 orbits for the viscous Neptune runs. The resid-
uals in the lower panel are defined as in Figure 4.

5.4 Viscous Neptune

In Figure 26 the comparative surface density contours after100 or-
bits for the viscous Neptune case are plotted. The theoretical esti-
mation of the spiral shocks positions by Ogilvie and Lubow (2002)
is shown by the dashed line. The flow is smoother than in the in-
viscid Neptune simulations. The density lumps moving alongthe
edge of the gap have disappeared and the planetary wakes are sta-
ble. The filamentary structures in the shock-capturing simulations
have a reduced amplitude compared with the inviscid case.

The vortensity maps are shown in Figure 27. The density blobs
lying next to the gap’s edge are not observed in the viscous simu-
lations in logarithmic scale. Several codes show wave reflection at
the outer boundary despite the wave damping condition.
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Figure 25. Time averaged torques and their PDSs for the inviscid Neptune simulations. The plots are shown in the same order as in Figure 9 and exclude the
material inside the Roche lobe.

The smoothed density profiles are shown in Figure 28 for
the viscous Neptune calculations. The gap profile is again ingood
agreement for the polar grid hydrodynamics codes. The gap isshal-
lower for FLASH-AG than for the other Eulerian codes. FLASH-
AP has a wider and deeper gap with a flat shape. PARASPH has
a very deep gap and SPHTREE has a strong asymmetry with the
deeper depression outside the planet postion. The residuals of the

averaged profiles divided by the disc mass are shown in the bottom
panel in Figure 4

The surface density opposite to the planet after 100 orbits
is shown in Figure 29. FLASH-AG has a shallow gap whereas
FLASH-AP has a deeper and broader gap. The waves observed in
the inner and outer disc agree within a few percent for the Eulerian
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Figure 26. Surface density maps after 100 orbits for the viscous Neptune simulations. The dashed line is the estimated theoreticalposition of the spiral arms.
The density range is−0.4 < log(Σ/Σ0) < 0.3.
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Figure 27. Vortensity contours after 100 orbits for the viscous Neptune simulations. The vortensity range is−0.1 < log(ζ ) < 1.
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Figure 29. Surface density profiles opposite to the planet position after 100
orbits for the viscous Neptune case.

Figure 30. Surface density azimuthal slice at the planet location after 100
orbits for viscous Neptune calculations.

schemes. PARASPH has a very open gap and SPHTREE has a
noisy profile with a deep cavity outside the planet’s radius.

The surface density azimuthal slices after 100 orbits are plot-
ted in Figure 30. A density spike appears again at the planet lo-
cation in the grid codes. The grid codes show a density decrease
of approximately 10-20% of the initial density in the centerof the
gap, while PARASPH has a decrease of about 60% as in the invis-
cid Neptune case.

The disc mass loss rate is shown in Figure 31. All the models
apart from FLASH-AP show total mass loss after 200 periods with
final values consistent within a factor of about 3. RODEO has a
sharp jump in mass loss rate at about 155 periods. FLASH-AP
results have a considerable mass transfer from the region close to
the star due to the gravitational softening.

The dT/dr profiles after 100 orbits are shown in Figure 32.
The profiles show a good agreement between the grid-based codes.

We plot the time averaged torques acting on the planet on the

Figure 31. Disc mass loss rate evolution for the viscous Neptune simula-
tions.

Figure 32. Specific torque profiles after 100 orbits for the viscous Neptune
simulations.

left hand side of Figure 33. The torque contribution from theinner
disc is positive, while the outer disc contribution is negative. The
outer disc dominates the total torque and would cause an inwards
orbital shift for a free moving planet. In Table 8, we show theav-
eraged torques at 200 orbital periods. The torques PDSs are shown
on the right hand side of Figure 33. The spectrum is rather flatfor
all codes which agrees with the absence of vortices or eccentricity
in the disc.

5.5 High resolution simulations

We studied the convergence of the results running the test prob-
lem at 2 and 4 times the original linear resolution with some
of the codes. NIRVANA -PC and NIRVANA -GD Jupiter simula-
tions were run at resolutionnr ×nφ = (256,768). Several tests at
nr ×nφ = (512,1536) were done with RH2D, NIRVANA -GD and
FARGO codes for Jupiter and Neptune planet masses. PARASPH
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Figure 33. Time averaged torques and corresponding PDSs for the viscous Neptune case. The plots are shown in the same order as in Figure 9 and exclude
the material inside the Roche lobe.

was run using 853280 particles and 146720 boundary particles for
the Jupiter viscous case.

In the grid-based schemes, the flow is observed to be smoother
and more stable in time than in the low resolution runs. Vortices are
still visible in the Jupiter inviscid simulations in the NIRVANA -PC
and FARGO simulations. The vortices are more extended than in
the lower resolution calculations and interact with the primary and

secondary shocks. There is more mass piling up inside the Roche
lobe after 200 orbits in the higher resolution cases in agreement
with the results of D’Angelo et al. (2005). Nevertheless, the aver-
aged density profiles are very similar to the results presented in the
previous sections. The gravitational torques are similar in the grid-
based codes and in good agreement with the low resolution results.

The PARASPH results with∼ 850000 particles have stronger
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Table 8. Averaged torques in the window 175–200 periods in units where
a = 1, P = 2π andM* = 1−µ for the Neptune viscous simulations.

Code Torque

NIRVANA -GDA −3.375560×10−5

NIRVANA -PC −2.467831×10−5

RH2D −3.257739×10−5

GLOBAL −3.742940×10−5

GENESIS −2.700463×10−5

PENCIL −7.303624×10−5

AMRA −2.634983×10−5

FLASH-AG −2.933768×10−5

FLASH-AP −6.022857×10−5

RODEO −2.697915×10−5

JUPITER −3.809917×10−5

shocks and the density profiles are in good agreement with thegrid-
based results. This suggests that SPH schemes need higher resolu-
tion to model accurately the corotation region and planetary wakes.

6 DISCUSSION

In this paper, we have studied a planet in a fixed orbit embedded in a
disc using 17 different SPH and Eulerian methods. The codes used
in the comparison have been thoroughly tested in problems with
known analytical solutions. The goal of this project was to investi-
gate the reliability of current astrophysical hydrodynamic codes in
the disc-planet problem, and to provide a reference for future cal-
culations. Performing this comparison also aided in the debugging
of the codes.

The results show good agreement on the general picture, al-
though there are some differences in the details. The density maps
and averaged profiles are consistent for the grid-based methods.
The variation in the disc mass is of the order of 10% after 100 or-
bital periods, but this does not seem to produce big differences in
the surface density distributions. The different boundaryconditions
tested in FARGO do not affect the results since the goal in both
boundary implementations was to avoid the reflection of waves. A
preliminary study of convergence using finer grids shows that there
is agreement at 2 and 4 times the original linear resolution.

Vortices are visible in the inviscid runs for both planet masses
µ = 10−3 and 10−4 in the grid codes, which induce a strong per-
turbation to the tidal torque. The vortices in the upwind simulations
have a larger amplitude and are more extended than in the shock-
capturing results. The total torque acting on the planet excluding
the material inside the Roche lobe agree in order of magnitude for
Jupiter models. The torque results for Neptune have greaterdis-
persion, possibly due to incomplete clearing of the gap, butagree
nevertheless in the final value within a factor 2.

It has been observed that shock-capturing codes show a large
amount of filamentary small-scale structure unseen in modelre-
sults obtained with other codes. This is especially true forboth
Direct-Eulerian implementations, AMRA and FLASH. In addi-
tion, AMRA results show enhanced small-scale structure when
compared to FLASH. Extensive comparison tests of the two im-
plementations has shown that much of the observed differences is
due to use of more selective dissipation algorithm in AMRA. (The
so-called flattening algorithm in AMRA is based on Eqns. A.7-
A.10 from Colella and Woodward (1984) while FLASH uses Eq.
A.2). After adopting the simplified version of the flatteningalgo-
rithm in AMRA, the results closely matched those obtained with

the FLASH code. Adding a small amount of artificial viscosity
with coefficient of 0.1, as recommended by Colella and Woodward
(1984), resulted in a further reduction of filamentary structures and
substantial reduction of the strength of vortices located at the gap
edges.

The upwind codes have a smooth disc structure and do not
show filaments in the inviscid simulations. This may be due tothe
fact that shock-capturing codes have small intrinsic viscosity in our
problem in cylindrical coordinates, where flow is dominatedby ad-
vection in only one dimension. Bryden et al. (1999) have shown
that van Leer based codes in polar coordinates may have low in-
trinsic viscosity comparable with shock-capturing methods. It has
been checked that none of the above changes are needed in AMRA
if the grid resolution is increased twice. In this case the solution is
much smoother and the vortices at the gap edges decay faster.

The Cartesian implementations produce results that are com-
parable to the other codes but there are differences in the gap struc-
ture due to the open inner boundary. The depleted density distribu-
tion in the inner disc in FLASH-AP produces different torques but
the torque contribution from the outer disc is consistent with the
cylindrical grid codes.

SPH codes predict the shape of the gap correctly but do not
resolve well low density regions where the number of particles is
small. In addition the spiral wakes are weaker, possibly dueto SPH
being more dissipative. The Balsara switch included in the SPH-
TREE code is used to reduce the shear component of artificial vis-
cosity but it may also smooth out the shocks. An advantage of SPH
codes is that the geometry of the problem is well adapted to a La-
grangian scheme and the algorithm implementation is simpler than
for Eulerian codes. The planet can be treated as a regular parti-
cle which accretes material. Furthermore, it is possible tofollow
the trajectory of individual fluid elements and study the accretion
flows. SPH codes are computationally more expensive than Eule-
rian codes at the same resolution. Our high resolution testsindicate
that higher resolution is needed in the SPH simulations to obtain
results comparable to the Eulerian grid codes.

Possible future work includes the comparison of high reso-
lution runs using multi-level meshes to investigate the gasflow
close to the planet, the study of the orbital shift of a free-moving
planet and 3-dimensional simulations (see e.g. Kley et al. 2001;
D’Angelo et al. 2003). The convergence of the results with reso-
lution needs to be studied in detail.

In closing we would like to reiterate that computational work
might be regarded as an experiment, rather than a simulation. We
have shown that different codes can give slightly differentresults
for the same physical problem. Reproducibility of experimental re-
sults is fundamental to the scientific process, and this standard must
be applied to those performed with computers. Before a computa-
tional result can be regarded as reliable, it must be confirmed by an
independent test with a different code.
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APPENDIX A: ADVICE FOR OTHERS

Putting together this comparison has been something of a “learn-
ing experience” for all concerned. Although not strictly scientific,
we would like to share our experiences with others who may be
contemplating similar comparisons.

As with many things, advance planning is the most impor-
tant. So far is possible, decide in advance which quantitiesshould
be monitored, and how often this should be done. What should be
checked every timestep (or so), and what is only required at much
less frequent intervals? Storage requirements are relevant to this:
for example, writing out the total mass in the simulation is alot
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cheaper (both in terms of space and time) than outputting theen-
tire density field. Changing the output quantities at a laterdate will
often involve re-running computations, which will delay matters.

Careful attention should also be paid to the format of the sub-
mitted files. Each code generally has its own output format. Those
co-ordinating the comparison do not have time to pick through each
of these - automated processingmustbe the goal. Make sure that
the format is carefully specified (since if there are two mutually in-
compatible ways of doing something, it is certain that results with
both ways will be submitted). As an aside, for grid based results,
it is probably more sensible to write out the indices of each cell,
rather than the co-ordinates themselves: integers are exact. Supply
the tables to convert indices to co-ordinates separately.

Pay similar attention to the problem specification itself. Some
flexibility will inevitably be needed, but try to keep this toa min-
imum. Again, the authors’ experience is that anything left vague
will be done in different ways by different groups.

Communication is also hugely important. In addition to set-
ting up a mailing list, the authors were able to hold several short
meetings, using funds provided by the EU. These were crucialto
moving the project forward. Better still would have been to have
held a longer workshop (perhaps a week) where everyone could
gather, discuss and run their codes together.

We hope that future groups will find our experiences useful in
planning their own code comparisons.
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