

Contents

- Neutrinos what we know and what we don't
- Designing an experiment to measure δ_{CP}
- Hyper-K concept
 - JPARC beam
 - Far detector design
 - Location, size, PMTs, DAQ
 - Near detectors
 - ND280, vPRISM, **TITUS**
- Hyper-K physics
 - $-\delta_{CP}$ sensitivity
 - Proton decay
 - Atmospheric neutrinos
 - Solar neutrinos
 - Supernovae

Neutrino Oscillations

<u>Mass differences</u>: Δm_{12} , Δm_{23} Govern at what distance/energy you see the maximum effect.

<u>Mixing angles:</u> θ_{12} , θ_{23} , θ_{13} The relative contributions of mass states to flavour states. Govern the amplitude of the effect

Atmospheric Neutrinos: $\Delta m_{23}, \theta_{23}$

Solar Neutrinos: $\Delta m_{12}, \theta_{12}$

Beam Neutrinos: $\theta_{13}, \theta_{23},$

Neutrino Masses

Neutrinos – the known/

- Are neutrinos DIRAC or Majora
- Is CP violated in the lepton sector? $(\delta \neq 0)$
- What is the neutrino Mass Hierarchy?
- What is the absolute scale of neutrin/
- Is θ_{23} maximal?
- Is there new physics?
 - Sterile neutrinos?
 - Non-standard interactions?
 -?

* Other double beta experiments are available

nowns

Neutrinos – the known unknowns

- Are neutrinos DIRAC or Majorana?
- Is CP violated in the lepton sector? $(\delta \neq 0)$
- What is the neutrino Mass Hierarchy?
- What is the absolute scale of neutrino mass?
- Is θ_{23} maximal?
- Is there new physics?
 - Sterile neutrinos?
 - Non-standard interactions?
 - -....?

Why are we here?

- CP violation is needed to explain the baryon asymmetry of the Universe.
- Different rates for $v_{\mu} \rightarrow v_{e}$ and $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$ oscillations
- Measurement require large statistics and well controlled systematics
- ...and its complicated...

CP violation

 $S_{ab} = sin(\theta_{ab})$ $c_{ab} = cos(\theta_{ab})$ $\Delta_{ab} = \Delta m_{ab}^{2} L/4E_{v}$

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= 4c_{13}^{2}s_{13}^{2}s_{23}^{2} \cdot \sin^{2}\Delta_{31} \\ &+ 8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}\cos\delta_{CP} - s_{12}s_{13}s_{23}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \\ &- 8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta_{CP} \cdot \sin\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \\ &- 8c_{13}^{2}c_{12}c_{23}^{2}s_{12}s_{23}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta_{CP}) \cdot \sin^{2}\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2} - \frac{aL}{4E_{\nu}}(1 - 2s_{13}^{2}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2} - \frac{aL}{4E_{\nu}}(1 - 2s_{13}^{2}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \\ &+ 8s_{13}^{2}s_{13}^{2}s_{23}^{2} - \frac{aL}{\Delta m_{31}^{2}}(1 - 2s_{13}^{2}) \cdot \sin^{2}\Delta_{31}, \end{split}$$

21/04/2016

Matter Effects

- Neutrinos travel through material that is not CP symmetric, i.e. matter not antimatter
- effective potential due to the forward weak scattering processes:

CP violation

 $S_{ab} = sin(\theta_{ab})$ $c_{ab} = cos(\theta_{ab})$ $\Delta_{ab} = \Delta m_{ab}^{2} L/4E_{v}$

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= 4c_{13}^{2}s_{13}^{2}s_{23}^{2} \cdot \sin^{2}\Delta_{31} \\ &+ 8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}\cos\delta_{CP} - s_{12}s_{13}s_{23}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \\ &- 8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta_{CP} \cdot \sin\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \\ &- 8c_{13}^{2}c_{12}^{2}c_{23}^{2}+s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta_{CP}) \cdot \sin^{2}\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2} - \frac{aL}{4E_{\nu}}(1 - 2s_{13}^{2}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \\ &+ 8e_{13}^{2}s_{13}^{2}s_{23}^{2} - \frac{aL}{4E_{\nu}}(1 - 2s_{13}^{2}) \cdot \sin^{2}\Delta_{31}, \\ a &= 2 \forall 2 \text{GFn}_{e}\text{E}_{\nu} \end{split}$$

matter effects

You also need to know
$$\theta_{12}$$
, θ_{23} , Δm_1 , Δm_{23} recisely to start with

Neutrinos – the known unknowns

- Are neutrinos DIRAC or Majorana?
- Is CP violated in the lepton sector? $(\delta \neq 0)$
- What is the neutrino Mass Hierarchy?
- What is the absolute scale of neutrino mass?
- Is θ_{23} maximal?
- Is there new physics?
 - Sterile neutrinos?
 - Non-standard interactions?
 -?

Mass Hierarchy

The race is on....

- T2K + Nova + reactor
 - Compare the absolute values of the effective Δm^2 determined by reactor (\bar{v}_e disappearance) and accelerator (v_μ disappearance) with high precision
- DUNE
 - Oscillation probability around the first oscillation maximum, $O(L/E_v) \sim 1$, tends to be enhanced (suppressed) if the mass hierarchy is normal (inverted) due to the matter effects
- JUNO/RENO-50
 - Look for the small interference effects caused by Δm^2_{31} and Δm^2_{32} in the medium baseline (L ~ 50 km) reactor neutrino oscillation experiment
- PINGU/ORCA/ICAL/HyperK
 - Atmospheric neutrinos. significant enhancement of the $v_{\mu} \rightarrow v_{e}$ appearance probability for upward-going neutrino in normal hierarchy and for anti-neutrino in inverted hierarchy

Neutrinos – the known unknowns

- Are neutrinos DIRAC or Majorana?
- Is CP violated in the lepton sector? $(\delta \neq 0)$
- What is the neutrino Mass Hierarchy?
- What is the absolute scale of neutrino mass?
- Is θ_{23} maximal?
- Is there new physics?
 - Sterile neutrinos?
 - Non-standard interactions?
 -?

Is $\sin\theta_{23}$ maximal?

• Currently measured value of θ_{23} is consistent with maximal mixing, $\theta_{23} \approx \pi/4$, measured from

$$P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - 4c_{13}^2 s_{23}^2 [1 - c_{13}^2 s_{23}^2] \sin^2(\Delta m_{32}^2 L/4E_{\nu})$$

$$\simeq 1 - \sin^2 2\theta_{23} \sin^2(\Delta m_{32}^2 L/4E_{\nu}), \qquad \text{(for } c_{13} \simeq 1)$$

- Whether θ_{23} is less or greater than $\pi/4$, could constrain models of neutrino mass generation and quark-lepton unification
- v_e appearance can determine $sin^2\theta_{23}sin^22\theta_{13}$
- Reactor experiments determine $sin^2 2\theta_{13}$
 - Resolve degeneracy with combination

Neutrinos – the known unknowns

- Are neutrinos DIRAC or Majorana?
- Is CP violated in the lepton sector? $(\delta \neq 0)$
- What is the neutrino Mass Hierarchy?
- What is the absolute scale of neutrino mass?
- Is θ_{23} maximal?
- Is there new physics?
 - Sterile neutrinos?
 - Non-standard interactions?
 -?

Experimental Strategy

Two possible approaches to probe δ_{CP} :

- Short baseline (~200km) less sensitive to matter effects -> Increased sensitivity to CP effects
- To maximise oscillation effect need $E_v < 1 \text{GeV}$
- Use off-axis narrow band beam

OR

- Long baseline (>1000km) measure matter effects
- To maximise oscillation effect need $E_v > 2 \text{GeV}$
- Unfold CPV from matter effects through E dependence using wide range of neutrino energies from On-axis beam
 - Matter effects amplitude proportional to L×E
 - CP effects amplitude proportional to L/E

Experimental Strategy

Two possible approaches to probe δ_{CP} :

- Short baseline (~200km) less sensitive to matter effects -> Increased sensitivity to CP effects
- To maximise oscillation effect need E_v < 1GeV
- Use off-axis narrow band beam
 OR
- Long baseline (>1000km) measure matter effects
- To maximise oscillation effect need E_v > 2GeV
- Unfold CPV from matter effects through E dependence using wide range of negtrino energies from On-axis per RINO EXPERIMENT

Oscillation Probabilities

Hyper Kamiokande

- 295km baseline from JPARC to Tochibora
- >1MW 600MeV off-axis beam
- 0.5Mton Water Cerenkov far Detector
 - Excellent e/ μ separation capability
 - High background rejection efficiency
 - High signal efficiency for sub-GeV neutrino events (CCQE)

JR Wilson, QMUL http://arxiv.org/pdt/1209.6586.pdf 20

Physics Potential

- CP violation
 - Explain the Baryon asymmetry of the Universe
- Proton Decay
- Atmospheric Neutrinos
 - Mass ordering,
 - + Beam: test 3 flavour paradigm precisely
 - search for new physics: NSI, Lorentz invariance, sterile neutrinos
- Solar Neutrinos
- Indirect dark matter
- Astronomical Sources
 - Galactic supernovae
 - dark matter annihilation, gamma ray burst jets, and pulsar winds

Inaugural Symposium of the HK protocollaboration@Kashiwa, Jan-2015

12 countries, ~250 members and growing

- International Steering Committee
- More international conveners
- International chair for international board of representative (IBR)
 21/04/2016

KEK-IPNS and UTokyo-ICRR signed a MoU for cooperation on the Hyper-Kamiokande project.

IPNS=Institute for Particle and Nuclear Studies

ICRR=Instituted for Cosmic Ray Research

Kamiokande Evolution 而乐乐秋秋 Hyper-Kamiokande Kamiokande Super-Kamiokande (2025-)(1983-1996) (1996-) 一ク記録 Water purificatio system Plac National a Muchala NAME AND ADDRESS OF THE PROPERTY OF THE PROPER 0.52Mton=520kton **3**kton 50kton (380kton fiducial)

JPARC and Beam

21/04/2016

JPARC and beam

- Beam energy spectrum tuned to oscillation maximum with off-axis technique
 - Reduces HE component background events
 - 600MeV well matched to Cerenkov detector

- T2K approved for 7.8 × 10²¹ protons-on-target (POT) -> 2020
- Proposal for T2K-II running: extend to 20 × 10²¹ POT -> 2026
- Upgrades to existing accelerators reach 1MW by start of HyperK experiment (2026) – 1.3MW planned

Far Detector

- Tochibora mine, 295km away
- 650m rock overburden, 1750 MWE
- 2.5km horizontal access
- Surveys of rock quality and known fault lines to optimize cavern location

Detector Design

2 × 74m diameter, 60m high cylindrical tanks, 40% Photo-coverage

- ~40, 000 50 cm diameter inward-facing photo-sensors per tank
- ~6,700 20 cm diameter outward-facing photo-sensors per tank

Tank Optimisation

	Super-K (SK)	Letter-of-Intent 2011 (LOI)	2 Tanks w/ High Photodetector density (2HD)	
Total Volume (Fiducial Volume)	0.05Mton (0.022Mt)	1Mt (0.56Mt)	0.52Mt (0.38Mt)	
Dimension	39m ⊉ × 42m (H)	48 (W) × 54 (H) × 250 (L) m³ ×2	74mΦ × 60m(H) ×2	
ID #of Photo- sensors (coverage)	11k (Super-K PMT) (40%)	99k (Super-K PMT) (20%)	80k (B&L) (40%)	
Single-photon detection efficiency	12%	12%	24%	
Photon-yield	1	0.5	2	
single-photon timing resolution	~2nsec	~2nsec	1nsec	

Timeline

Nominal staging for the tanks is 6 years after 1 tank.

J-PARC Beam Power Upgrade

Detailed timeline:

- Geological survey
- Access tunnel: 2 years
- Cavity excavation: 3 years
- Tank (liner, photosensor support): 2.7 years
- Water filling: 0.4 years
- Exact cavern location(s) and its design will be finalized during the geological survey.

1.3MW from 2025

Schedule: FY2018~2045

FY2018:start of 1st phase construction (8y) FY2026: start (1st tank) operation FY2032 (nominal): start (2nd tank) operation FY2026~2035: Neutrino CP measurement FY2026~2045:proton decay searches, solar/atm/SN neutrino observations 13

PMTs

- Y. Suda, U. Tokyo, http://www.hyper-k.org/doc/mth2013_suda.pdf
- Newly developed highefficiency and high-resolution PMTs (Hamamatsu R12860)
- At 60m depth in Hyper-K cavern applied pressure is close to the manufacturers upper specification of the Super-K R3600 PMT
 - 0.65 MPa!
 - Optimised shape
 - Plastic cases
 - Pressure tests
 - Rigorous QA

20-inch Venetian Blind dynode type PMT (R3600) 20-inch Box & Line dynode type PMT

PMTs

A HQE Box and Line PMT with a 31% QE sample shows twice the efficiency of normal QE Super-K PMTs (QE = 22%, based on an average of four samples).

DAQ

- The overall rate of hits (mostly from dark noise) from the inner detector will be about 460MHz, leading to a total input data rate of 5GB/s including additional data, in the absence of waveform information
- SK-like trigger:
 - trigger will be generated when the total number of hits seen (NHITS) in a sliding time-window exceeds a certain threshold (e.g. 27 hits)
 - Require no dead time. Important to observed delayed events: Michel e⁻s and neutron captures.
- Required to handle Galactic Supernova events
 - 100,000s events per second

Reducing Uncertainties

Near Detectors

Inherit T2K Near Detectors *

* They weren't designed to last to 2030+

ND280 Limitations

Source of uncertainty	$ u_{\mu} \ CC$	$ u_{ m e} CC$
Flux and common cross sections		
(w/o ND280 constraint)	21.7%	26.0%
(w/ ND280 constraint)	2.7%	3.2%
Independent cross sections	5.0%	4.7%
SK	4.0%	2.7%
FSI + SI(+ PN)	3.0%	2.5%
Total		
(w/o ND280 constraint)	23.5%	26.8%
(w/ ND280 constraint)	7.7%	6.8%

K. Abe et al. (T2K), Phys. Rev. D91, 072010 (2015)

ND280	Far Detector
Forward Tracking	4π coverage
Scintillator and water targets (subtraction method)	Water target
Unoscillated spectrum	Oscillated spectrum

Near Detector Upgrade Possibilities

Intermediate Water Cerenkov Detector

- Large enough to contain muons across oscillation peak energies
- Far enough from beam for minimal pile-up of events in same beam timing bunch

➢ 1-2km from Beam target

- Off-axis span of 1°-4° to measure the final state leptonic response over a range of neutrino spectra peaked at different energies
- Gd Loading to tag neutrons and statistical separate v and \overline{v} and different interaction modes
- Magnetised Muon Range Detector (MRD) to extend muon energy range and for charge identification

Proposals - vPRISM

Aims: Direct measure of lepton kinematics for any given set of oscillation parameters -> remove neutrino interaction modelling uncertainties.

10m

E, (GeV)

M. Scott, Triumf

vPRISM Analysis Concept

Recreate oscillated neutrino flux at SK using near detector

Directly measure muon p- θ for given value of oscillation parameters

Analysis becomes less sensitive to cross-section modelling J R Wilson, QMUL

39

TITUS Proposal

2kton Gadolinium doped water Cherenkov detector UK-Driven

- ~2km from J-PARC
- 2.5° Off Axis
- 22m long, 11m diameter
- 0.1% Gadolinium doping
- Magnetized Muon Range Detector at downstream end
- Small side MRD

MRD 4m

Gadolinium Doping

- Neutron capture on Gadolinium:
 - Cross section of 49,000b compared to 0.3b for H
 - 8MeV gamma cascade with 4-5MeV visible energy
 - 0.1% Gd doping: ~90% of neutrons capture on Gd

- New signal to distinguish v / \overline{v} events and different interaction modes:
 - $\begin{array}{ll} \ v_{\mu} \ \text{CCQE:} & v_{\mu} + n \rightarrow \mu^{-} + p & 0 \ \text{neutrons} \\ \\ \ \overline{v_{\mu}} \ \text{CCQE:} & \overline{v_{\mu}} + p \rightarrow \mu^{+} + n & 1 \ \text{neutron} \\ \\ \ v_{\mu} \ \text{MEC:} & v_{\mu} + (n+n) \rightarrow \mu^{-} + p + n & 0.2 \ \text{neutrons on average} \\ \\ \ \overline{v_{\mu}} \ \text{MEC:} & \overline{v_{\mu}} + (p + p/n) \rightarrow \mu^{+} + n + p/n & 1.8 \ \text{neutrons on average} \end{array}$
- Greatly enhanced sample purities:
 - $v_{\mu} CCQE: 36\% \rightarrow 67\%$
 - \overline{v}_{μ} CCQE: 63% \rightarrow 88%

 Feasibility of Gd in water Cherenkov detector being tested in EGADS arXiv: 1201.1017. Gd addition to SuperK approved. JR Wilson, QMUL

Magnetized Muon Range Detector

- 18% of muons escape tank
- Magnetized (1.5T) iron tracking detector
 - Range out forward muons -> 2GeV, increased statistics
 - Measure charge (~95% efficiency average) -> direct constraint on wrong-sign contamination
 - Calibration of the complementary gadolinium charge reconstruction technique
- Optimize @0.6GeV peak (~90%)
 - Double scintillator planes and 10cm air gaps between first 3 iron layers.

Combined MRD & Gd techniques give 96% pure v_{\mu} and \overline{v}_{μ} samples from events in the oscillation peak in TITUS.

Side MRD – Baby MIND

- Side magnetized-MRD.
 - Higher Q² region: This part of phase space is poorly understood -> useful for testing and discriminating cross-section models.
 - Muons have different angular distributions for v and v̄ interactions -> useful for measuring wrong sign background.
- Proof of Principle: Baby-MIND (University of Geneva)
 - Will be actively used in WAGASCI (forward MRD)

Event Rate Considerations

- To successfully match a neutrino interaction and a captured neutron from the same interaction for a Gddoped detector, it is useful to have roughly one interaction per spill in the TITUS ID with minimal penetration of external particles. Number of neutrino interaction
- 2.2×10¹⁴ POT/spill

Number of neutrino interactions per kT per spill

Baseline (m)	FHC	RHC
1000m	1.48	0.50
1838m	0.42	0.14
2036m	0.33	0.11

FHC: consider SK-style OD (1m) and FV cut 1m from wall (1.27kT FV)

Baseline (m)	Tank ev/spill	Tank ev/bunch	ID ev/spill	ID ev/bunch	FV ev/spill	FV ev/bunch
1000	39.17	4.87	3.92	0.47	2.41	0.28
1838	11.19	1.37	1.25	0.14	0.79	0.08
2036	8.91	1.09	1.04	0.11	0.66	0.07

Inner Detector Volume

Nominal Tank, 2036m downstream, 22m long × 5.5m radius, 1 my 4 v Cut JR Wilson, QMUL

Event Selection

- Super-K single-ring muon (1Rμ) and single-ring electron (1Re) selections applied to TITUS
- Vertex > 2m from wall (scope to optimise)

<u>1 Ring μ (1Rμ)</u>				
Muon-PID				
Fully contained				
No other rings				
p _{recon} > 200MeV				

 $\begin{array}{l} \underline{1 \ Ring \ electron \ (1Re)} \\ \hline Electron-PID \\ p_{recon} > 100MeV \\ P_{ve_recon} < 1250MeV \\ \hline Michel \ e- \ and \ \pi^0 \ veto \ cuts \end{array}$

Resolutions:

	Electron	Muon
Visible energy [GeV]	0.075	0.042
Visible energy [%]	9.0	6.0
Lepton Angle [degress]	2.4	1.7
Vertex Position [m]	0.21	0.12
$\mathrm{E}_{ u}^{\mathrm{QE}} \; [\mathrm{GeV}]$	0.17	0.09
$\mathrm{E}_{\mathrm{ u}}^{\mathrm{QE}}$ [%]	24.0	8.0

Selection + Neutron tagging

- In RHC, 23% wrong-sign in 1Rµ selection
 - Reduce to 8% by requiring \geq 1 tagged neutron

- Signal:Background increases 1.5->2.7

Selection + Neutron tagging

- In FHC, 24% CCother in 1Rµ selection
 - Reduce by requiring 0 tagged neutrons
 - Signal:Background increases 2.9->4.8
 - Improved neutrino energy reconstruction (QE assumption)

Systematic Uncertainties

- Flux systematic based on T2K error model. Assume:
 - 6% prior uncertainty (flux model and replica target data)
 - Correlations between TITUS and HK flux (100%)
 - Correlations between FHC and RHC flux (60%)
- Interaction uncertainty based on T2K prior input to pre2015 analyses
 - + 50% uncertainty on normalisation of MEC events
 - $+ v \overline{v}$ cross-section ratio uncertainty = 20%
- Near-to-far ratio important for oscillation analyses
- Double ratio relevant for δ_{cp} analysis

Systematic	N_{FHC}^{HK}	N_{FHC}^{TITUS}	N_{RHC}^{HK}	N_{RHC}^{TITUS}	R_{FHC}	R_{RHC}	$\frac{(R_{RHC})}{(R_{EHC})}$
Interaction Syst.	24.1	24.4	11.4	12.0	4.2	4.5	1.9
Flux Syst.	6.5	6.6	6.0	6.3	0.9	1.0	1.3
Total Syst.	21.8	21.9	14.2	14.4	4.5	4.3	2.4
Statistical	2.5	0.1	3.2	0.2	2.5	3.1	4.3
Stat. $+$ Syst.	21.4	21.4	11.8	11.2	5.1	5.6	4.9

Intermediate WC Detector

- In reality, we will not build 2 new intermediate detectors!
- Work towards hybrid detector concept that merges three main design features
 - Off-axis spanning
 - Gd neutron capture information
 - Muon Range Detector

Hyper-K Physics Potential

- CP violation
 - Explain the Baryon asymmetry of the Universe
- Proton Decay
- Atmospheric Neutrinos
 - Mass ordering,
 - + Beam: test 3 flavour paradigm precisely
 - search for new physics: NSI, Lorentz invariance, sterile neutrinos
- Solar Neutrinos
- Indirect dark matter
- Astronomical Sources
 - Galactic supernovae
 - dark matter annihilation, gamma ray burst jets, and pulsar winds

Hyper-K Physics Potential

- CP violation
 - Explain the Baryon asymmetry of the Universe
- Proton Decay
- Atmospheric Neutrinos
 - Mass ordering,
 - + Beam: test 3 flavour paradigm precisely
 - search for new physics: NSI, Lorentz invariance, sterile neutrinos
- Solar Neutrinos
- Indirect dark matter
- Astronomical Sources
 - Galactic supernovae
 - dark matter annihilation, gamma ray burst jets, and pulsar winds

$\delta_{\text{CP}}\,\text{Sensitivity}$

- Fit reconstructed MC for TITUS and HK simulations using VALOR framework
- Minimise global poisson log likelihood constructed from the expected (nexp) and observed (nobs) number of events in each reconstructed energy bin
- Use Asimov data set: nominal MC = fake data
- Apply systematic parameter weights to nexp (MC)

Predicted TITUS spectra

Predicted HK spectra - reconstructed

Figure 28: Predicted Hyper-K spectra for oscillation parameters $sin^2(\theta_{23}) = 0.528$, $sin^2(\theta_{12}) = 0.306$, $sin^2(\theta_{13}) = 0.025$, $\delta_{cp} = -1.601$, $\Delta m_{32}^2 = 2.5 \cdot 10^{-3} eV^2$, $\Delta m_{12}^2 = 7.5 \cdot 10^{-5} eV^2$, hierarchy=normal

Systematic Uncertainties

Affect of δ_{CP} on HK Spectra

δ_{CP} Sensitivity

	Error (radians)				
True δ_{cp}	No Systematics	Hyper-K only	TITUS + Hyper-K		
0	0.08	0.15	0.11		
$\frac{\pi}{4}$	0.13	0.23	0.17		
$-\frac{\pi}{2}$	0.29	0.38	0.33		

Hyper-K Physics Potential

- CP violation
 - Explain the Baryon asymmetry of the Universe
- Proton Decay
- Atmospheric Neutrinos
 - Mass ordering,
 - + Beam: test 3 flavour paradigm precisely
 - search for new physics: NSI, Lorentz invariance, sterile neutrinos
- Solar Neutrinos
- Indirect dark matter
- Astronomical Sources
 - Galactic supernovae
 - dark matter annihilation, gamma ray burst jets, and pulsar winds

Proton Decay

Baryon number violation is believed to have played an important role during the formation of the universe: one of the famous Sakharov Conditions to explain the baryon asymmetry of the universe.

Proton decay is an observable consequence of the violation of baryon number.

- Requirements:
 - Large number of nucleons
 - Reconstruction to extract signals and suppress backgrounds
- Strength of WC: sensitive to wide variety of modes

- Mode preferred by most GUTs
- Clean Topology
 - No invisible final state particles. Reconstruct p invariant mass
- Selection = 2 or 3 e-like rings
- Low Backgrounds from atmospheric neutrinos ($Ccv_e\pi$)

- K⁺ produced with 340MeV/c : below Cherenkov threshold
- See prompt γ from p hole de-excitation and K⁺-> μ ⁺ + ν (64%) or K⁺ -> π ⁺ + π ⁰ (21%)

63

Other Modes p decay

FIG. 3. A comparison of historical experimental limits on the rate of nucleon decay for several key modes to indicative ranges of theoretical prediction. Included in the figure are projected limits for Hyper-Kamiokande and DUNE based on 10 years of exposure.

Hyper-K Physics Potential

- CP violation
 - Explain the Baryon asymmetry of the Universe
- Proton Decay
- Atmospheric Neutrinos
 - Mass ordering,
 - + Beam: test 3 flavour paradigm precisely
 - search for new physics: NSI, Lorentz invariance, sterile neutrinos
- Solar Neutrinos
- Indirect dark matter
- Astronomical Sources
 - Galactic supernovae
 - dark matter annihilation, gamma ray burst jets, and pulsar winds

Atmospheric neutrinos

- Provides both neutrino and anti-neutrino fluxes
- Spanning a few orders of magnitude in energy.
- Spanning path lengths O(10) – O(10⁴)km

Hyper-K Physics Potential

- CP violation
 - Explain the Baryon asymmetry of the Universe
- Proton Decay
- Atmospheric Neutrinos
 - Mass ordering,
 - + Beam: test 3 flavour paradigm precisely
 - search for new physics: NSI, Lorentz invariance, sterile neutrinos
- Solar Neutrinos
- Indirect dark matter
- Astronomical Sources
 - Galactic supernovae
 - dark matter annihilation, gamma ray burst jets, and pulsar winds

Solar Neutrino Oscillations

KamLAND V² x10⁻⁵ 18 17 16 15 $\begin{array}{ll} -\sin^2(\Theta_{12})=0.312\substack{+0.033\\-0.025} & \Delta m^2_{21}=(7.54\substack{+0.19\\-0.18})\ 10^5 eV^2 & \sin^2(\Theta_{13})=0.0242\pm0.0026\\ \sin^2(\Theta_{12})=0.311\pm0.014 & \Delta m^2_{21}=(4.85\substack{+1.4\\-0.59})\ 10^5 eV^2\\ \sin^2(\Theta_{12})=0.308\pm0.013 & \Delta m^2_{21}=(7.50\substack{+0.19\\-0.18})\ 10^5 eV^2 \end{array}$ **Solar Neutrino Experiments** Combined 15 14 13 12 -1% 11 10 9 8 7 $\Delta m_{12}^2 2\sigma$ tension -2% between Super-K 65432 -3% **Day-Night and** -4% KamLAND -5% -10% 0.1 0.2 0.3 0.4 0.5 $sin^{2}(\theta)$

 Θ_{12} in good agreement

- Expected asymmetry ≈1%
- Tight control of up/down systematic
- High statistics in higher energy region

Hyper-K Physics Potential

- CP violation
 - Explain the Baryon asymmetry of the Universe
- Proton Decay
- Atmospheric Neutrinos
 - Mass ordering,
 - + Beam: test 3 flavour paradigm precisely
 - search for new physics: NSI, Lorentz invariance, sterile neutrinos
- Solar Neutrinos
- Indirect dark matter
- Astronomical Sources
 - Galactic supernovae
 - dark matter annihilation, gamma ray burst jets, and pulsar winds

Supernovae

- Core Collapse Super Nova: Death of >8M_☉ star, releases ~3×10⁵³ergs
 - 99% energy release carried by vs
 - − Neutronisation burst: ~10ms of electron captures (p + $e^- \rightarrow n + \overline{v}_e$) releases ~10⁵¹ergs
 - Accretion phase <~1s</p>
 - Cooling phase: several seconds in which all v types emitted
- Understanding of supernova process
- Probe neutrino
 - Measure direction, energy, type and arrival times
 - Low background as short burst

If a CCSN explosion were to take place halfway across our Galaxy, Hyper-K would observe ~52,000 - 79,000 neutrino interactions per tank!

Hyper-K SN signals

10kpc SN, two tanks

DUNE main sensitivity to v_e through v_e + 40 Ar $\rightarrow e^-$ + 40 K^{*} Good Complementarity

Summary

- Hyper-K is the proposed next generation Water Cherenkov Detector
 - Leptonic CP Violation
 - Precision Neutrino Oscillation Measurements
 - Proton Decay Searches
 - Supernova sensitivity
 - +++ more Physics

 Proposal submitted to Science Council of Japan by Prof. T. Kajita on behalf of Hyper-K in March 2016.