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Abstract. We consider two protoplanets gravitationally interacting with each other and a protoplanetary disc. The
two planets orbit interior to a tidally maintained disc cavity while the disc interaction induces inward migration.
When the migration is slow enough, the more rapidly migrating outer protoplanet approaches and becomes locked
in a 2:1 commensurability with the inner one. This is maintained in subsequent evolution. We study this evolution
using a simple analytic model, full hydrodynamic 2D simulations of the disc planet system and longer time N-body
integrations incorporating simple prescriptions for the effects of the disc on the planet orbits. The eccentricities
of the protoplanets are found to be determined by the migration rate and circularization rate induced in the
outer planet orbit by the external disc. We apply our results to the recently discovered resonant planets around
GJ876. Simulation shows that a disc with parameters expected for protoplanetary discs causes trapping in the 2:1
commensurability when the planets orbit in an inner cavity and that eccentricities in the observed range may be
obtained.
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1. Introduction

The recent discovery of extrasolar giant planets orbit-
ing around nearby solar–type stars (Marcy & Butler
1998, 2000) has stimulated renewed interest in the the-
ory of planet formation. The objects observed so far
have masses, Mp, that are characteristic of giant plan-
ets (0.4 MJ

<∼ Mp
<∼ 11 MJ), MJ denoting a Jupiter

mass. The orbital semi-major axes are in the range
0.04 AU <∼ a <∼ 2.5 AU, and orbital eccentricities in the
range 0.0 <∼ e <∼ 0.67 (Marcy & Butler 2000).

Disc-protoplanet interactions have been invoked to
explain the presence of giant planets orbiting close to
their host stars through inward orbital migration induced
through disc-protoplanet tidal interaction (e.g. Papaloizou
et al. 1999; Lin et al. 2000). Up to now, for the most part
extrasolar planets appear to be isolated. However, a few
multiple systems are known. The configuration of these
may contain important information about their origin and
possible migration history. Of special interest is the re-
cently discovered system around GJ876. This is found to
be close to a 2:1 commensurability. Such a configuration
is indeed suggestive of orbital migration. Commensurable
satellite systems such as the Galilean satellites are thought
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to owe their origin to migration induced by tidal interac-
tion with the central planet (e.g. Goldreich 1965).

Recent simulations of single protoplanets in the ob-
served mass range (Kley 1999; Bryden et al. 1999; Lubow
et al. 1999) interacting with a disc with parameters
thought to be typical of protoplanetary discs, but con-
strained to be in circular orbit, indicate gap formation and
upper mass limit consistent with the observations. Nelson
et al. (2000) relaxed the assumption of fixed circular or-
bits, found inward migration and that the disc-protoplanet
interaction leads to strong eccentricity damping. Due to
accretion onto the central star, an inner cavity was formed
in the disc interior to which the protoplanet orbited.

Simulations of two planets interacting with a disc have
been performed by Kley (2000), Bryden et al. (2000), and
Masset & Snellgrove (2001). So far inward migration of
two planets locked into a 2:1 commensurability has not
been simulated. However, Bryden et al. (2000) found a
tendency for gap material between the two planets in fixed
circular orbits to be cleared, ending up interior to the inner
planet orbit or exterior to the outer planet orbit.

Taken together the above results suggest a natural out-
come of two protoplanets interacting with a disc is that
they orbit interior to an inner disc cavity while the exter-
nal disc causes inward migration of the outer orbit. This
catches up the inner orbit leading to the possibility of res-
onant interaction.
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It is the purpose of this paper to investigate such reso-
nant interaction and whether, for reasonable protoplane-
tary disc models, it leads to a locking such that the planets
subsequently migrate maintaining the commensurability.
Similar behavior occurs as a result of the tidally induced
migration of the Gallilean satellites (e.g. Goldreich 1965;
Lin & Papaloizou 1979).

Here we shall assume the prior evolution of the system
leads to the orbital separation of the planets being slightly
larger than that required for a strict 2:1 commensurability
without considering the history in detail as it is beyond
the scope of this paper. However, we comment that this
might have been complicated with the planet masses vary-
ing with time through mass accretion from the disc.

Analytic methods, N -body integrations and direct two
dimensional numerical simulations are used to investigate
the evolution and found to give consistent results.

We consider two protoplanets gravitationally interact-
ing with each other and a protoplanetary disc. The two
planets orbit interior to a tidally maintained disc cavity
while the disc interaction induces inward migration. This
migration is of type II and so is regulated by the mag-
nitude of the disc viscosity. When the migration is slow
enough, the more rapidly migrating outer protoplanet ap-
proaches and becomes locked in a 2:1 mean motion com-
mensurability with the inner one. The commensurability
persists in subsequent evolution. The eccentricities of the
protoplanets are increased by the resonant perturbations.
In principle, tidal interaction with the disc may cause
growth or decay of orbital eccentricity according to the
protoplanet mass and physical conditions in the disc (Lin
& Papaloizou 1993). Wide gaps, small disc viscosity and
high masses favour eccentricity growth while narrow gaps,
larger viscosity and lower masses lead to decay of eccen-
tricity. For disc viscosities normally assumed in proto-
planetary disc models eccentricity growth occurs only for
protoplanet central star mass ratios greater than ∼0.02
(Papaloizou et al. 2001). Thus for the conditions consid-
ered here, orbits are circularized through interaction with
the disc (e.g. Goldreich & Tremaine 1981). A balance is
achieved in which the eccentricities of the resonantly cou-
pled protoplanets are determined by their migration rate
and the circularization rate induced in the outer planet
orbit by the external disc.

We apply our results to the recently discovered res-
onant planets around GJ876. Simulation shows that mi-
gration induced by a disc with parameters expected for
protoplanetary discs results in trapping in the 2:1 com-
mensurability when the planets orbit in an inner cav-
ity. Eccentricities in the observed range may be ob-
tained. Further studies usingN -body integrations indicate
that the planetary system will remain stable for at least
2× 107 orbits when the external disc is removed.

We note that we are restricting this analysis to mass
ratios such that both protoplanets will open a gap, and
maintain the cavity, corresponding to protoplanet masses
above around one Jupiter mass (assuming a solar mass pri-
mary). This is in contrast to previous work by Masset &

Snellgrove (2001), where the outer protoplanet had insuf-
ficient mass to fully open a gap, which resulted in a migra-
tion reversal (outward migration) when in resonance with
the more massive inner protoplanet. In the case presented
here, as both protoplanets are in a cavity, the migration is
driven by the outer protoplanet interacting with the outer
disc only, which results in inward migration.

In Sect. 2 we describe a simple analytic model of two
migrating protoplanets in a 2:1 commensurability. The ec-
centricities of the protoplanet orbits are related to the
migration rate, and circularization rate induced by the
disc. In Sect. 3 we describe a simulation of two planets or-
biting in an inner disc cavity. Parameters appropriate to
GJ867 are adopted. This demonstrates resonant trapping
and that eccentricities of the observed magnitude may be
produced.

In Sect. 4 we describe N -body calculations confirm-
ing the above conclusions and indicating the long term
stability of the system. Finally in Sect. 5 we discuss our
results.

2. A simple model

We consider a system consisting of 2 planets and a primary
star moving under their gravitational attraction. When
there are no disc interactions and the motion is conserva-
tive the system is conveniently expressed in Hamiltonian
form using Jacobi coordinates (e.g. Sinclair 1975). The co-
ordinates, r2, of inner planet of reduced mass m2 are re-
ferred to the central star of mass M∗ and the coordinates
of the outer planet, r1, of reduced mass m1 are referred
to the center of mass of the central star and inner planet.
The Hamiltonian can be written correct to second order
in the planetary masses as

H =
1
2

(m1|ṙ1|2 +m2|ṙ2|2)− GM∗1m1

|r1|
− GM∗2m2

|r2|

−Gm1m2

|r12|
+
Gm1m2r1 · r2

|r1|3
· (1)

Here M∗1 = M∗ + m1,M∗2 = M∗ + m2 and r12 = r2 −
r1. The Hamiltonian can be expressed in terms of the
osculating semi-major axes, eccentricities and longitudes
of periastron ai, ei, $i, i = 1, 2 respectively as well as the
longitudes λi, and the time t. We recall that λi = ni(t −
t0i) + $i, with ni being the mean motion and t0i giving
the time of periastron passage. The energy is given by
Ei = −GmiM∗i/(2ai), and the angular momentum hi =
mi

√
GM∗iai(1− e2

i ) which may be used to describe the
motion instead of ai and ei.

Only terms first order in the eccentricities and involv-
ing the resonant angles φ = 2λ1−λ2−$1, and ψ = 2λ1−
λ2−$2, are retained in the expansion (see Sinclair 1975).
Then the perturbing part of the Hamiltonian (∝m1m2)
can be written

H12 = −Gm1m2

a1
(Be1 cosφ− Ce2 cosψ) , (2)
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where C = 2b(2)
1/2(α) + (1/2)αdb(2)

1/2(α)/dα and B =

1.5b(1)
1/2(α) + (1/2)αdb(1)

1/2(α)/dα − 2α. Here b(n)
1/2 denotes

the usual Laplace coefficient and α = a2/a1. From now on
we replace M∗i by M∗.

2.1. Orbital precession

We may also take into account additional gravitational
forces that may produce precession of the planetary orbits.
These could result from the mass distribution provided by
the disc exterior to the outer planet or the time averaged
mass distribution of the planets themselves. These effects
are not included in the resonant Hamiltonian given above.
Accordingly we add to it another Hamiltonian

Hint = −1
2
m1n1a

2
1ωpr1 e

2
1 −

1
2
m2n2a

2
2ωpr2 e

2
2. (3)

Here, as can be verified from the equations of motion,
we have adopted a parameterization such that the pre-
cession frequency induced in the orbit of mi is ωpri(ai).
This prescription does not allow the precession frequency
to depend on other quantities. However, appropriate
matching can be carried out for a particular case under
consideration.

2.2. Basic equations

The equations of motion are derived from:
dEi/dt = −ni∂H ′/∂λi − (n1T +D)δi1,

dhi/dt = −∂H ′/∂λi − ∂H ′/∂$i − Tδi1,
dλi/dt = ni + ni∂H

′/∂Ei + ∂H ′/∂hi,
d$i/dt = ∂H ′/∂hi,

with H ′ = H12 + Hint. These can be obtained from
Hamilton’s equations (e.g. Brouwer & Clemence 1961) to
which we have added, for the outer planet m1, an addi-
tional external torque −T with an associated orbital en-
ergy loss rate n1T together with additional orbital energy
dissipation rate D. The torque and dissipation rate could
be produced by tidal interaction with the disc leading to
inward migration and orbital circularization.

We thus obtain to lowest order in the planetary eccen-
tricities and perturbing masses.

dn1

dt
=

6n2
1m2

M∗
(Be1 sinφ− Ce2 sinψ)

+
3n1a1

GM∗m1
(n1T +D) (4)

dn2

dt
= −3n2

2m1a2

M∗a1
(Be1 sinφ− Ce2 sinψ) (5)

de1

dt
= −m2n1

M∗
B sinφ− Da1

GM∗m1e1
(6)

de2

dt
=
m1n2a2

M∗a1
C sinψ (7)

dφ
dt

= 2n1 − n2 −
m2

e1M∗
n1B cosφ− ωpr1 (8)

dψ
dt

= 2n1 − n2 +
m1a2

e2a1M∗
n2C cosψ − ωpr2. (9)

2.3. Stationary solutions

When no migration or circularization occurs (T = D = 0)
equilibrium solutions may exist such that ψ and φ are
either zero or π. Each of n1, n2, e1, e2 are then constant.

A relation between the eccentricities then follows from
Eqs. (8) and (9) in the form

e2a1(e1M∗ωpr1 +m2n1B cosφ) =
e1(−m1a2n2C cosψ + e2a1M∗ωpr2). (10)

This condition matches the precession rates of the orbits of
the two planets. Also 2n1 = n2. Noting that the eccentric-
ities are positive, when they are of very small magnitude,
the precessional terms become negligible and there is a
solution with ψ = 0, φ = π or ψ = 0, φ = π. In either case
we have

m2a1e2n1B = m1a2e1n2C. (11)

For larger eccentricities the precessional terms may be-
come important in Eq. (10) and then solutions with ψ =
0, φ = 0, may occur. Then Eq. (10) gives

m2a1e2n1B +m1a2e1n2C = e1e2a1M∗(ωpr2 − ωpr1). (12)

For stable solutions, when perturbed, the angles may
undergo librations about their equilibrium points (e.g.
Sinclair 1975). There are two frequencies of oscillation
ν1, ν2 being given for any ψ, φ in the limit of small
eccentricities by ν2

1 = (m2n1B)2/(M∗e1)2, and ν2
2 =

(m1n2a2C)2/(a1M∗e2)2. We look for a solutions with mi-
gration which are close to stable solutions of this type.

2.4. Resonant migration

We look for solutions of Eqs. (4–9) corresponding to the
situation where the two planets migrate inwards locked
in resonance with n1/n2 maintained nearly equal to 1/2
while the eccentricities remain nearly constant. The ten-
dency for the resonant coupling to excite the eccentricities
is counterbalanced by circularization through the action of
D ≡ (GM∗m1e

2
1)/(a1tc) which defines the circularization

time for e1. Similarly Eq. (4) defines an inward migration
timescale tmig = GM∗m1/(3Ta1n1).

We begin by supposing that the angle ψ executes a
libration about zero such that the mean rate of change
of e2 is zero. Similarly the mean rates of change of n1

and n2 induced by ψ are zero. Such a libration is seen in
simulations. We also suppose the angle φ either librates
or circulates but in such a way that the correspondingly
induced mean rates of change are not zero. The simplest
example is when the angle executes a very small or even
zero amplitude libration about a value slightly offset from
zero or π (e.g. Lin & Papaloizou 1979).
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We suppose the circulation/libration periods to be
short compared to the timescale of migration so that av-
eraging is possible. We denote the average of n1e1 sinφ by
δ. Then averaging Eqs. (4–9) gives

1
n1

dn1

dt
=

6m2Bδ

M∗
+

3a1

GM∗m1
(n1T +D) (13)

1
n2

dn2

dt
= −6m1Ba2δ

M∗a1
(14)

de2
1

dt
= −2m2Bδ

M∗
− 2Da1

GM∗m1
≡ 0 (15)

dφ
dt

= − m2

e1M∗
n1B cosφ− m1a2

e2M∗a1
n2C − ωpr1 + ωpr2.(16)

Here on the left hand sides the overline denotes the
time average and for simplicity of notation this has been
dropped from the right hand sides. The resonance condi-
tion also implies 1

n2

dn2
dt = 1

n1

dn1
dt . Using this and eliminat-

ing δ from the above, we obtain for the rate of increase of
n1 through migration

1
n1

dn1

dt
=

3a1

GM∗m1
(n1T +D)

(
m1a2

m1a2 +m2a1

)
. (17)

Also (15) gives for the eccentricity balance

e2
1 =

tcm2a1

3tmig(2m1a2 +m2a1)
· (18)

The above determines the eccentricity of the outer planet
e1 as a function of tc and tmig. For a system with m1/m2 =
3, we get e1 ∼

√
0.07tc/tmig.

For e1 in the 0.01 range we need tc ∼ 10 orbits if
tmig ∼ 104 orbits.

The eccentricity of the inner planet is determined by
Eq. (16). For small amplitude librations this is given by
Eq. (10). That would still apply when φ is circulating pro-
vided the cosines are time averaged and the mean circu-
lation rate is small.

3. A simulation of two migrating resonantly
coupled planets

The protoplanetary disc is numerically simulated using
an Eulerian 2D hydrodynamic code. The code used is a
modified version of NIRVANA, which has been described,
tested and used successfully elsewhere on a similar prob-
lem involving interacting planets (Masset & Snellgrove
2001). Incorporated with the hydrodynamic code is a 4th-
order Runge-Kutta integrator which is used to evolve the
orbits of the two planets. The gravitational forces calcu-
lated from the disc model are used in the equations of
motion of the planets, and the disc itself responds to the
planetary potential. Hence the system evolves in a self-
consistent fashion. In order to obtain the long integration
times needed for simulations of this type the FARGO algo-
rithm (Masset 2000) is applied. However, tests have shown
that the results are not affected by this.

We use a 2D cylindrical (r, ϕ) grid with 200 radial
zones distributed uniformly between r = 0.4 and r = 3.47
in dimensionless units and 300 azimuthal zones. We apply
outflow conditions at the inner boundary to simulate the
accretion of disc material onto the central star.

3.1. Physical setup

We attempt to simulate the resonance locking of the sys-
tem GJ876 via tidally induced migration of the plan-
ets, using plausible values of the disc parameters. The
disc is assumed to be thin and isothermal, with con-
stant aspect ratio h/r = 0.07, and a constant Shakura &
Sunyaev (1973) α-viscosity prescription with α = 2×10−3

is adopted. The two planets are initially in circular orbits
coplanar with the disc, at radial locations r1 = 1.0 and
r2 = 0.6. Hence the outer planet is located outside the ex-
act 2:1 commensurability (r2 = 0.63). The planet masses
are chosen to correspond to the minimum mass ratios ob-
tained from observations (Marcy et al. 2001). With masses
normalised so that stellar mass is M∗ = 1, this corresponds
to m1 = 6×10−3 and m2 = 1.8×10−3. The planet masses
are fixed as the planets are assumed to be no longer ac-
creting material from the disc.

The disc is prescribed an initial surface density Σ0 cor-
responding to what would give a disc mass of 2 × 10−3

within the orbit of the outer planet. However we as-
sume that both planets are located inside a tidally trun-
cated cavity located at r < 1.3, with low surface den-
sity Σcavity = 0.01Σ0. This cavity is supposed to have
already been cleared by the tidal action of the two planets.
Between 1.3 < r < 1.5 the surface density is prescribed
such that ln Σ linearly joins to Σ0.

3.2. Results

The tidal interaction of the planets with the disc material
causes the planets to migrate inwards (see Fig. 1). The
inner planet is deep within the cavity and only interacts
with low surface density material and thus migrates slowly.
The outer planet has its outer 2:1 Lindblad resonance lo-
cated outside the cavity and in the body of the disc. Hence
there is more material exerting a negative torque on the
planet, and therefore it migrates faster, despite its larger
mass. The ratio of semi-major axes a1/a2 of the planets
decreases until the planets “lock” into a 2:1 commensu-
rability with n2 ≈ 2n1 at a time t ≈ 400 orbits. Both
planets then subsequently migrate inwards a further 10%
maintaining this ratio, showing the resonance to be robust.

Figure 1 also shows the calculated values of the res-
onance angles φ and ψ. Once the commensurability lock
has occurred, these are both librating about zero. The
resonant interaction causes an eccentricity growth of both
planets, the growth halting at around average values of
e1 = 0.06 and e2 = 0.34 although both eccentricities
exhibit variations around these average values. The pe-
riastron angles of the two planets oscillate around the
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Fig. 1. The lower plots show the semi major axes a (lower left)
and eccentricities e (lower right) for both planets. The upper
plots show the resonance angles φ and ψ. The time unit is
measured in orbit periods of the disc material at r = 1.

alignment position, being the natural stable state, and this
is in agreement with model parameter fits to observations
(Laughlin & Chambers 2001).

The disc cavity remains at low density, and the cavity
edge diffuses slowly in on the viscous diffusion timescale,
following the outer planet. Figure 2 shows a surface den-
sity plot of the inner regions of the disc.

3.3. Relation to analytic model and observations

The simulation confirms that tidally induced migration
of two planets with the given mass ratios leads to trap-
ping into the 2:1 commensurability. The resonance angles
both undergo stable periodic librations as per Sect. 2 and
the resonance is robust for the length of the simulation.
We can conclude that stable resonance trapping would be
the probable outcome of the evolution of such a system.
The finding of the system GJ876 near to or in such a res-
onance is probably simply a consequence of past tidally
induced migration of the two planets into such a state.
The magnitudes of the eccentricities are in broad agree-
ment with fitted model parameters to the observations of
GJ876 with e1 = 0.12± 0.10 and e2 = 0.31± 0.08 (Marcy
et al. 2001; Laughlin & Chambers 2001). The eccentric-
ity ratio e2/e1 ≈ 5.7. We comment that Eq. (11) which
applies in the small eccentricity limit when one of φ, ψ is
zero and the other π gives e1/e2 ∼ 1/11. However, the
fact that both angles librate about zero indicates, within
the context of the simple model, that non resonant or-
bital precession needs to be incorporated and we should
use Eq. (10) to make a comparison with the simulation.

Fig. 2. Surface density plot for inner regions of the disc at
a time corresponding to 300 orbits. Darker areas on the plot
correspond to regions of lower surface density. The disc cavity
is clearly visible, as are the density waves outside the cavity.
Inside the cavity are the wakes of the two planets.

This is

e1e2a1M∗ωpr1 +m2a1e2n1B cosφ =
−m1a2e1n2C cosψ + e1e2a1M∗ωpr2. (19)

Since the librations of the angles are about a value close to
zero, we replace them by zero to make simple estimates.
The largest non central mass in the system is m1 so we
include its effect in causing non resonant orbital precession
for m2 by including a non zero ωpr2. Also we include the
corresponding effect on m1 due to m2 which produces a
non zero value of ωpr1. Then we have

ωpr1 +
m2n1B

e1M∗
= ωpr2 −

n2m1a2C

e2a1M∗
· (20)

This condition equates the precession rate of the orbit of
m2 on the right with that of m1 on the left. In the for-
mer case the first contribution comes from the time aver-
aged orbit and the second is the resonant contribution. In
fact with e2 ∼ 0.34, the orbits approach each other quite
closely to within 22 percent of the outer semi major axis.
But the resonant configuration avoids close encounters
keeping the planets apart. Thus we expect the resonant
and non resonant contributions to the precession rate to
show significant cancellation. The large value of e2 prob-
ably makes strict comparison inaccurate. Nonetheless the
simulation gives a precession period of about 70 orbits in
a retrograde sense. We can estimate that this to be of the
same magnitude as would be predicted from the second
term on the left hand side which however gives prograde
precession. Thus the non resonant precession rate due to
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Table 1. This table shows the parameters used for the or-
bital integration runs. The first column gives the run label,
the second column the migration time scale, the third column
the circularization time scale, and the fourth column gives the
disc dispersal time. The fifth, sixth and seventh columns give
the final eccentricities for the outer and inner planets, and the
ratio of these eccentricities.

Run tmig tc tdisp e1 e2 e2/e1

R1 3.33 × 103 360 8× 103 0.095 0.41 4.3

R2 3.33 × 103 100 8× 103 0.05 0.3 6

R3 3.33 × 102 360 8× 102 0.34 0.72 2.1

R4 103 108 2.4× 103 0.095 0.41 4.3

R5 3.33 × 103 360 0.0 0.095 0.41 4.3

m2 needs to be be comparable to the resonant effect but
of opposite sign.

Considering the precession rate ofm2,we estimate that
ωpr2 corresponds to 70 orbits in the prograde sense while
the resonant term corresponds to 70/2 orbits in the retro-
grade sense. Thus the combined effect produces a preces-
sion period of 70 orbits in the retrograde sense as seen in
the simulation.

In summary our simulation gives plausible eccentric-
ity values for the two planets, that can be understood in
outline by use of a simplified analytic theory and are con-
sistent with the current observations.

4. Orbit integrations

In addition to the analytic model presented in Sect. 2 and
the hydrodynamic simulations presented in Sect. 3, we
have also performed three-body orbit integrations using a
fifth-order Runge-Kutta scheme (e.g. Press et al. 1993).

The basic assumptions of the model are that the two
planets exist within the inner cavity of a tidally truncated
disc that lies exterior to the outer planet. Tidal interaction
with this disc causes inwards migration of the outer planet,
and also leads to eccentricity damping of the outer planet.
It is further assumed that as the planets migrate inwards
and approach their final semi-major axes, the disc mate-
rial disperses exponentially on some prescribed decay time
tdisp, the process being initiated such that the required
final semi-major axis of the outer planet was asymptoti-
cally attained. In our numerical calculations, a torque was
applied to the outermost planet such that it migrated in-
wards on a time scale of tmig local orbital periods as de-
fined in Sect. 2, and a damping force was applied in the
radial direction to damp the eccentricity on a time scale
of tc local orbital periods also as defined in Sect. 2.

These integrations used initial conditions correspond-
ing to the more massive, outermost planet being located
initially at 5 AU, with the lighter inner-most planet lo-
cated initially at 2.5 AU. The planet masses adopted for
the orbit integrations are the same as the minimum masses
reported for the planets in the system around GJ876 by

Fig. 3. This figure shows the evolution of the planet semi-
major axes and eccentricities for the run R1 shown in Table 1.

Marcy et al. (2001) (i.e. 1.87 MJ and 0.56 MJ). The stel-
lar mass is taken to be 0.32 M�. Whilst these calcula-
tions provide only a crude approximation to the detailed
physics of disc–companion interactions, their simplicity al-
lows us to perform many calculations, covering a wide area
of parameter space, and also to run for much longer time
scales than is possible for simulations of the type described
in Sect. 3.

A number of calculations have been performed to ex-
amine the relationship between the final values of e1, e2,
and their ratio e1/e2, to the various input parameters tmig,
tc, and tdisp. The results of some of these calculations are
presented in Table 1, and are discussed below. The unit of
time used in the abscissa of the Figs. 3 to 5 is the orbital
period for an object at 1 AU in orbit around a star with
mass 0.32 M�, and is denoted as P(1 AU).

4.1. Dependence on migration and circularization
times

Equation (18) shows that the eccentricity of the outer
planet, e1, depends on the ratio of tc/tmig. Here we present
results of simulations that explore how the eccentricity ra-
tio e2/e1 depends on tc and tmig.

Figure 3 shows the evolution of the semi–major axes
and eccentricities for the run R1, whose model parameters
are described in Table 1. This figure shows the inward mi-
gration of the outer planet that subsequently locks to the
inner planet as it reaches the 2:1 commensurability. The
subsequent evolution is such that the two planets, now
resonantly locked, migrate inwards. The eccentricities re-
sult from the balance between eccentricity driving through
the resonant interaction, and eccentricity damping due to
the disc interaction. As the planets approach their final
semi-major axes, the effects of migration and eccentric-
ity damping are removed exponentially with decay time
tdisp = 8× 103 local orbits, causing them to cease migra-
tion at semi–major axes a1 ' 0.2 and a2 ' 0.126 which
are values appropriate to GJ876. The subsequent evolu-
tion beyond a time of t ' 0.45 P(1 AU) in Fig. 3 occurs
in the absence of disc effects, and suggests a long–term
stability of the system given that it remains stable for
2 × 107 orbits of the outer planet at its final semi-major
axis. Figure 4 shows the evolution of the resonant angles φ
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Fig. 4. This figure shows the evolution the resonant angles φ
and ψ for the run R1 described in Table 1. These show libration
around φ = ψ = 0, in agreement with the results from the
hydrodynamic simulation shown in Fig. 1.

and ψ, which librate about φ = ψ = 0 in agreement with
the results presented in Sect. 3 for the full hydrodynamic
simulations.

Figure 5 shows the results from run R3 described in
Table 1, and illustrates the effect of reducing tmig while
keeping tc constant. As expected from Eq. (18), the ec-
centricity of the outer planet increases from e1 ' 0.1
to e1 ' 0.35 when tmig changes from 3.33 × 103 to
3.33× 102 local orbital periods. However, the ratio e2/e1

has also changed from e2/e1 ' 4 to e2/e1 ' 2.
Calculation R2 illustrates the effect of keeping tmig

constant while changing tc. As expected from Eq. (18),
reducing tc leads to a reduction in e1, since the disc model
damps the eccentricity more effectively. We also find that
the ratio e2/e1 again changes, it now being e2/e1 ' 6, as
compared to e2/e1 ' 4 for run R1.

Equation (18) predicts that keeping the ratio tmig/tc
constant, but changing both tmig and tc independently,
should leave e1 unchanged. Calculation R4 indicates that
this is what happens, and also shows that the ratio e2/e1

remains unchanged.
Overall the results are entirely consistent with the an-

alytic predictions presented in Sect. 2 and with the hydro-
dynamical simulations presented in Sect. 3. Furthermore,
they indicate that the ratio e2/e1 scales rather weakly with
tmig/tc. We comment that from Sect. 2 Eq. (10) we expect
the eccentricity ratio to reach ∼11 as e1 → 0. Long–term
stability of two–planet systems that become locked due
to disc–induced orbital migration is also indicated by our
calculations. In particular run R1 covers a time scale cor-
responding to 2×107 orbits of the outer planet in its final
configuration. We find that it is possible to arrange e1 to
match the observed value of the outer planet in the GJ876
system by fixing tmig and choosing tc appropriately, but it
is difficult to then obtain a value for e2 that matches the
reported value of e2 = 0.27.

4.2. Dependence on disc dispersal time scale

We have performed simulations to examine the effect of
removing the disc on different time scales on the stability
of the system. We find that the stability is largely unaf-
fected by the rate at which the disc is removed. Figure 3

shows the evolution of the semi-major axes and eccentric-
ities from a run in which the disc was removed on a time
scale of tdisp = 8 × 103 local orbital periods. In this case
the disc dispersal was switched on once the outer planet
semi-major axis was a1 < 0.5 AU. The final semi-major
axis of the planet is determined by the radius at which the
disc dispersal is initiated, and the time scale over which
the disc is removed. Calculation R5 was similar to R1
except that the disc was removed instantaneously. The re-
sults presented in Table 1 show that this has little effect
on the final outcome. A slight increase in the scatter of
the temporal distribution of eccentricities was observed.

Fig. 5. This figure shows the evolution of the planet semi-
major axes and eccentricities for the run R3 shown in Table 1.

5. Summary and discussion

In this paper we have considered two protoplanets grav-
itationally interacting with each other and a protoplane-
tary disc. The two planets orbit interior to a tidally main-
tained disc cavity while the disc interaction induces inward
migration.

We have supposed that the previous evolution of the
system results in the the planets getting into a configu-
ration with an orbital separation just exceeding that re-
quired for a 2:1 commensurability. This evolution is likely
to have involved both accretion and migration. Given the
set up we consider a natural evolution is towards both
planets orbiting in a cavity outside of which orbits the
protoplanetary disc. Tidal interaction results in the in-
ner disc material either being expelled into the outer disc
or accreting onto the central star. Subsequently the outer
planet migrates towards the inner one as a result of inter-
acting tidally with the exterior disc.

When the migration is slow enough, we found that the
outer protoplanet approached and became locked into a
2:1 commensurability with the inner one. This was main-
tained in subsequent evolution. We studied the nature of
these interactions using a simple analytic model, hydro-
dynamic 2D simulations and longer time N -body integra-
tions. These all gave consistent results.

The magnitude of the stabilized eccentricities was
found to be determined by the ratio of the migration rate
to the circularization rate induced in the outer planet or-
bit by the external disc. The eccentricity ratio e1/e2 was
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found to vary with the magnitude of the ratio being more
extreme for smaller eccentricities.

We have applied our results to the recently discov-
ered resonant planets around GJ876. Simulation shows
that a disc with parameters expected for protoplanetary
discs causes trapping in the 2:1 commensurability when
the planets orbit in an inner cavity and that eccentricities
in the observed range may be obtained. In this case the
orbits were found to be aligned with both resonant angles
librating about zero. The whole system then precessed in
a retrograde sense. Finally when the disc is removed on
a range of timescales the orbital configuration has been
found to be stable for up to 2× 107 orbits subsequently.
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