NPA Mid-Term Exam Nov 2007

Answer All Questions

1)	Lithium (Li) is the 3 rd element in the periodic table. A particular isotope of this element known	n as
	Lithium-5. Give the atomic number, atomic mass and neutron number of Lithium-5.	[3]
2)	Write down the formulae for the nuclear mass, and atomic mass of an element, in terms of	
	nucleon masses and the binding energy B.	[4]
3)	What is the difference between atomic and nuclear masses?	[2]
4)	Briefly explain what nuclear binding energy is.	[4]
5)	For a nucleus ${}^{A}_{Z}X_{N}$ write down the equations for α , β^{+} , β^{-} , γ , decay to a nucleus Y	[4]
6)	Explain what is meant by the mean lifetime, half life and decay constant of a nuclear decay	
		[3]
7)	The binding energy per nucleon for ${}^{235}_{92}$ U is 7.5 MeV, whilst for the fission fragments ${}^{92}_{36}$ Kr a	and
	¹⁴¹ ₅₆ Ba the binding energy per nucleon is 8.5 MeV. Estimate the energy release in this fission	
		[2]
8)	Describe very briefly what is meant by the term "magic numbers", and give two examples of	
		[3]
9)	Sketch the energy spectra of alpha, beta and gamma radiation giving an estimate of the energy	
		[6]
10)	If the energy levels of a nucleus are: $1s_{1/2}$ $1p_{3/2}$ $1p_{1/2}$ $1d_{5/2}$ $1d_{3/2}$ $2s_{1/2}$ $1f_{7/2}$ what is the	[0]
	nuclear spin & parity of ${}^{15}_{6}$ C?	[2]
11)	242 Cm decays via alpha emission to an excited state of 238 Pu, which further decays to the groun	
	state via gamma emission. The Q value of alpha decay is 4.6MeV and the gamma ray energy i	
10)		[4]
		[2]
13)	Explain <u>why</u> neutrons from the fission of 235 U in a nuclear reactor need to be moderated.	[3]
14)	The isotope ${}^{14}{}_{8}$ O is a positron emitter, decaying to an excited state of ${}^{14}{}_{7}$ N. The gamma rays from the state of ${}^{14}{}_{7}$ N.	om
14)	this latter have an energy of 2.313 MeV and the maximum energy of the positrons is 1.835 MeV	
	The mass of 14 ₇ N is 14.003074 u and that of the electron is 0.000549 u. Write the equation for	
	decay of the oxygen isotope and sketch an energy level diagram for the process. Given that on	
		[6]
	atomic muss and (a) is equal to 351.502 me (70 mind the muss of 80.	L^1

- **15**) In Rutherford's scattering experiment alpha particles of 10 MeV kinetic energy are fired at a foil of ¹⁹⁷Au nuclei. The differential cross section for alpha particle scattering is observed to be a smoothly varying function of the scattering angle θ .
 - a) Draw a sketch of the observed cross section as a function of θ from 0 to 180 degrees.
 - b) Sketch a similar graph for np scattering, explaining any differences.
 - c) Explain <u>quantitatively</u> why no diffraction pattern is seen in the Rutherford scattering cross section, justifying your reasoning. [6]