

In particular: violation of parity inversion!

Nuclear Physics and Astrophysics - Lecture 11

In 1938 related process of electron capture was observed: orbital electron captured by nucleus
$$\begin{split} n &\to p + e^- + \bar{\nu}_e & \text{negative } \beta^\text{-} \text{ decay} \\ p &\to n + e^+ + \nu_e & \text{positive } \beta^\text{+} \text{ decay} \\ p + e^- &\to n + \nu_e & \text{electron capture} \end{split}$$

Dr Eram Rizvi

Nuclear Physics and Astrophysics - Lecture 11

Consider free neutron decay (
$$t_{1/2} \approx 10 \text{ mins}$$
) $n \rightarrow p + e^- + \bar{\nu}_e$
Define Q for reaction in usual way: difference in initial & final masses
 $Q = (m_n - m_p - m_e - m_{\bar{\nu}})c^2$
For neutrons at rest: $Q = T_p + T_e + T_{\bar{\nu}}$ ignoring p* recoil (only 0.3 KeV)
This is measured to be Q=0.782 ± 0.013 MeV
electron & neutrino share the 'missing' energy: max e' energy = min neutrino energy
calculation of Q using masses and comparison to measurement \Rightarrow infer neutrino mass
 $m_{\bar{\nu}}c^2 = m_nc^2 - m_pc^2 - m_ec^2 - 0.782 MeV/c^2$
 $m_n = 939.573 MeV/c^2$
 $m_p = 938.280 MeV/c^2$
 $m_e = 0.511 MeV/c^2$
Fermi developed the theory of β decay on neutrino hypothesis

Dr Eram Rizvi

8

7

Neutrino hypothesis verified by careful experiment: measure momentum of nuclear recoil & electron low energy nuclei are easily scattered - difficult to measure can be achieved in few cases applying momentum conservation, data is consistent with unobserved massless particle m are <u>nuclear</u> masses $Q_{\beta^-} = \left[m_N {A \choose Z} X - m_N {A \choose Z+1} Y - m_e\right] c^2$ Note: kinematics must be relativistically treated B^A, is binding energy of ith <u>electron</u> convert nuclear to atomic masses: $m_A(^A_Z \mathbf{X})c^2 = m_N(^A_Z \mathbf{X}) + Zm_ec^2 - \sum_{i=1}^{L} B^A_i$ $Q_{\beta^{-}} = \left(\left[m_A (^A_Z \mathbf{X}) - Zm_e \right] - \left[m_A (^A_{Z+1} \mathbf{Y}) - (Z+1)m_e \right] - m_e \right) c^2 + \left(\sum_{i=1}^Z B_i^A - \sum_{i=1}^{Z+1} B_i^A \right)$ m_A are <u>atomic</u> masses $Q_{\beta^{-}} = [m_A(^A_Z X) - m_A(^A_{Z+1} Y)]c^2$ in atomic masses Ignoring <u>difference</u> in binding energy, then For β^{+} decay: $Q_{\beta^{+}} = [m_A(^A_Z X) - m_A(^A_{Z-1} Y) - 2m_e]c^2$ Dr Eram Rizvi Nuclear Physics and Astrophysics - Lecture 11 9

• In ɣ ơ	lecay nucleus emits a photon
• Simila electi	rly Fermi postulated neutron spontaneously creates electron & on anti-neutrino and converts to proton
	$\frac{n}{\overline{v_e}} p^+$
	Fermi Theory of β decay is consistent with data if coupling of particles has very small value - i.e. very small probability of occurring
	We found neutrino was consistent with having zero mass
	It turns out this question has two very different implications:
	- solar neutrino problem - mass-energy density of the universe
	But for now lets return to beta decay

			and and a	a and a second		6	<u>\Q</u>
What is the neutrin There are	o? three types a	and associate	ed anti-part	icles:			
	neutrino	spin	charge	mass			
	Ve	1/2	0	< 3 eV			
	νμ	1/2	0	< 0.19 MeV			
	ντ	1/2	0	< 18.2 MeV			
				neutrinos also +1 for neutri -1 for anti-ne	o carry a lepton nu nos utrinos	mber	
	I	Beta decay or	nly involves el	ectron type ne	utrinos		
Dr Eram Rizvi		12					

Neutrino was inferred from 'violation' of energy-momentum conservation in beta-decay

Direct observation of neutrino was not made until 1956

σ=

Lets look at its interaction cross section for the reaction:

$$\nu_e + p \to n + e^+$$

probability per target atom for reaction to occur

incident flux of neutrinos

Dr Eram Rizvi

Nuclear Physics and Astrophysics - Lecture 11

13

