Nuclear Physics and Astrophysics

PHY-302

Dr. E. Rizvi

Lecture 10 - Alpha Decay

Material For This Lecture

New topic!

Alpha decay:

Definition

Quantum mechanics of tunnelling process

Application to alpha decay

Comparison of model to experimental data

Nuclear reaction equation for alpha decay

$${}^{A}_{Z}\mathbf{X}_{N} \rightarrow {}^{A-4}_{Z-2}\mathbf{X}_{N-2} + \alpha$$

X = parent (or mother) nucleus

Y = daughter nucleus

Alpha decay is <u>spontaneous</u> emission of ${}^{4}_{2}$ He from an unstable nucleus

"spontaneous" = kinetic energy appeared without cause

Can be understood as simple quantum mechanical process: **Tunneling**

Alpha decay is calculable

Will provide information about nuclear structure

Least penetrating of all emissions - stopped by \sim few centimetres air

charge = +2 \Rightarrow strongly ionising, loses energy quickly in Coulomb scatters

Dr Eram Rizvi

Nuclear Physics and Astrophysics - Lecture 10

Alpha emission: Coulomb repulsion is important for large A Coulomb repulsion ~ Z² Nuclear attraction ~ A

Heavy nuclei are observed to emit alpha particles

appearance of K.E. comes from mass: total mass is reduced \Rightarrow total Binding energy is increased

 α particle very stable - tightly bound \Rightarrow large B , small mass

Let's see why...

$$A_Z^A X_N \rightarrow A^{-4}_{Z-2} Y_{N-2} + \alpha$$

Energy-momentum conservation for X at rest gives:

$$M_{X}c^{2} = M_{Y}c^{2} + T_{Y} + M_{\alpha}c^{2} + T_{\alpha}$$
 T=kinetic energy

Recall*: calculate Q value for reaction:

$$\begin{split} Q &= (\sum_i M_i - \sum_f M_f) c^2 \\ &= T_f - T_i \end{split} \qquad \qquad \mathsf{T_i=0} \text{ and } \mathsf{T_f=T} \text{ of alpha (assuming Y doesn't recoil)} \end{split}$$

Q value is net energy release - can write in terms of Binding Energy, B Spontaneous decay <u>ONLY</u> if Q>0

$$Q = (M_X - M_Y - M_\alpha)c^2$$
$$= B_Y + B_\alpha - B_X$$
$$B_\alpha > B_X - B_Y$$

Q = total kinetic energy (assuming decay at rest)

thus Q is maximised by having $B^{}_{\alpha}$ and $B^{}_{\gamma}$ large i.e. $m^{}_{\alpha}$ and $m^{}_{\gamma}$ small

* discussed in lecture 5

Dr Eram Rizvi

Nuclear Physics and Astrophysics - Lecture 10

Figure 8.1 The inverse relationship between α -decay half-life and decay energy, called the Geiger-Nuttall rule. Only even-*Z*, even-*N* nuclei are shown. The solid lines connect the data points.

Large Q means large diff in B between X and Y nuclei Means X more unstable Decay more likely to occur

note: ²³⁵U has long $t_{1/2}$ If it had shorter $t_{1/2}$ by factor 1000, there would be no naturally occurring U - no nuclear industry

Theory of α Emission

1928: Attempt to understand α emission in QM framework

- α particle is preformed daughter moving within potential of nucleus
- little evidence to believe pre-formation
- this approach if vindicated means α particle behaves as if it is preformed

Quantum mechanical approach: tunnelling of α particle from nuclear / Coulomb potential

Dr Eram Rizvi

Nuclear Physics and Astrophysics - Lecture 10

- Particle crosses barrier with reduced amplitude & same T !

- Nuclear potential : square well, width a
- For r>a only Coulomb potential operates
- For a<r
b potential V > Q (classically particle is bound)
- For r > b particle is classically allowed
- Quantum mechanically wavefunction leaks into forbidden region
- α emission rate depends on tunnelling probability
- Explains why α emitters do not decay immediately
- BE of ⁴He is 28 MeV
- Q ~ 5 MeV $\&V_0 \sim 35$ MeV (well depth)
- Barrier height at r=a is ~ 34 MeV

For ²³⁵U leakage prob is very low ($t_{1/2}$ very large), α particle hits barrier ~10³⁸ times before penetration!

Dr Eram Rizvi

-V₀

Nuclear Physics and Astrophysics - Lecture 10

In 'semi-classical' approach: decay constant, $\lambda = f P$

V(r)~I/r

a

Q

b

- f = frequency of collisions with barrier
- P = probability of transmission through barrier

Estimate f ~ v/a with v given by kinetic energy of α particle in <u>daughter</u> nucleus (~Q) For 8 MeV v~10⁷ m/s i.e. f~10⁷/10⁻¹⁴m = 10²¹/s if P~10⁻²⁹ then λ ~10⁻⁸

Exact solution very similar to method described

Then probability for penetration of each infinitesimal barrier is dP:

$$\mathrm{d}P = exp\left(-2\mathrm{d}r\sqrt{\frac{2m}{\hbar^2}[V(r)-Q]}\right)$$

Probability to penetrate barrier is $P = e^{-2G}$ Larger P for larger Q!

mov factor:
$$G=\sqrt{rac{2m}{\hbar^2}}\int_a^b\sqrt{V(r)-Q}\mathrm{d}r$$

warning: do not think of the particle moving from r=a to r=b in 'forbidden region' we are calculating a wave function - particle exists in all places with different probability!

You cannot imagine the alpha particle sitting in this region and experiencing a repulsive Coulomb force

 $-V_0$

V

 $\frac{\ln 2}{\sqrt{2}}$

recall: $t_{1/2} =$

a V b G is Ga

Why does Uranium not decay via Mg emission?

In low momentum approximation (low kinetic energy approximation):

$$Q=\frac{1}{2}mv^2\ll \frac{Zze^2}{4\pi\epsilon_0 R} \qquad \qquad {\rm R} \mbox{ is nuclear radius (R~R_0A^{1/3})}$$

Particle energy much less than maximum barrier height Gamov factor simplifies: 7×2^{2}

$$G \simeq \sqrt{m} \frac{Z z e^2}{4\pi\epsilon_0 \hbar v}$$

v is velocity of outgoing particle

or in terms of α particle kinetic energy T (= Q) $G \propto Z \sqrt{\frac{m}{Q}}$

$$\begin{split} \lambda &= fP \\ &= fe^{-2G} \\ \log \lambda &= 57 - 1.7Z \sqrt{\frac{m}{Q}} \end{split}$$

Approximation holds for most heavy nuclei

Dr Eram Rizvi

Nuclear Physics and Astrophysics - Lecture 10

We made lots of approximations and neglected many factors!

- Probability of pre-forming α-particle in nucleus
- ignored Fermi's Golden Rule (lecture 3)

$$\lambda = \frac{2\pi}{\hbar} |V_{fi}|^2 \rho(E_f)$$

- (should calc wavefunc. for complete nucleus, and prob. of finding it in α + X' state)
- this probability should depend on whether nucleus is ee/oe/oo
- ignored angular momentum considerations
- shape of potential used is idealised case
- > assumed nuclei are spherical, α emitters have large A, nuclei are often deformed
- Calculation strongly depends on value of R used
- 4% change in R leads to change in $t_{1/2}$ by factor 5!

Despite this, calculation is accurate to ~ factor 50 over 20 orders of magnitude

П

Isotopes of Thorium			Half Lives $t_{1/2}$ (s)	
	А	Q(MeV)	Measured	Calculated
	220	8.95	10 ⁻⁵	3.3x10 ⁻⁷
	222	8.13	2.8x10-3	6.3x10 ⁻⁵
	224	7.31	1.04	3.3x10 ⁻²
	226	6.45	1854	$6.0 \mathrm{x10^{1}}$
	228	5.52	6.0x10 ⁷	2.4x10 ⁶
	230	4.77	2.5x10 ¹²	1.0x10 ¹¹
	232	4.08	4.4x10 ¹⁷	2.6x10 ¹⁶

Expected and measured half-lives agree to within factor ~ 50

Dr Eram Rizvi

Nuclear Physics and Astrophysics - Lecture 10

Energy level diagram for Alpha decay of ²⁴²Cm to 4 states of ²³⁸Pu

- Alpha emission does not leave daughter nucleus in ground state
- Intensity is fraction of all alpha-decays to that state
- Each has different Q value: Q value to ground state - excitation energy
- Intensity reduces as excitation energy increases

spectroscopy of alpha-decay can reveal energy levels of excitations measurement gives kinetic energy of α particle \Rightarrow determine Q value

Assuming highest energy α decay is to ground state Each state will (usually) decay to ground state or lower excitation via γ -ray photon emission observe α and γ emission in co-incidence gives confidence in determination of energy levels

More about spectroscopy later

Dr Eram Rizvi

Nuclear Physics and Astrophysics - Lecture 10