

PHY-302

Dr. E. Rizvi

Lecture 7 - The Semi-Empirical Mass Formula

Material For This Lecture

Today we will cover Liquid Drop Model

- Motivation
- Model terms and Parameters
- Applications:
- Nuclear Masses
- **Binding Energies**
- Conditions of Stability Introduction
- Implications of Nuclear Decay
- **Applications For Nuclear Reactions**

The liquid drop model:

earliest model of nucleus nucleus thought of as collection of bound objects 'objects' are in constant motion

Dr Eram Rizvi

Nuclear Physics and Astrophysics - Lecture 7

- Many other models exist describing nuclear phenomena
- Liquid Drop Model gives us the quantitative Semi-Empirical Mass Formula
- Quantifies properties of nuclei:
 - binding energies mass stability decays
- Not a fundamental model semi-empirical
- Only has qualitative treatment of nuclear force
- Quantitative power comes from fitting model parameters to data
- Nonetheless its makes some powerful quantitative predictions

how do we measure binding energy?

measure nuclear mass and sum of nucleons to determine B

Element		Mass of	Nuclear Mass	Binding Energy	Binding Energy
		Nucleons (u)	(u)	(MeV)	MeV/Nucleon
Deuterium	D	2.01594	2.01355	2.23	1.12
Helium 4	4He	4.03188	4.00151	28.29	7.07
Lithium 7	7Li	7.05649	7.01336	40.15	5.74
Beryllium 9	9Be	9.07243	9.00999	58.13	6.46
Iron 56	56Fe	56.44913	55.92069	492.24	8.79
Silver 107	107Ag	107.86187	106.87934	915.23	8.55
lodine 127	1271	128.02684	126.87544	1072.53	8.45
Lead 206	206Pb	207.67109	205.92952	1622.27	7.88
Polonium 210	210Po	211.70297	209.93683	1645.16	7.83
Uranium 235	235U	236.90849	234.99351	1783.8	7.59
Uranium 238	238U	239.93448	238.00037	1801.63	7.57

Α

Dr Eram Rizvi

Nuclear Physics and Astrophysics - Lecture 7

Liquid drop model arose from observation that $B/A \sim constant$ across periodic table

Analogous to liquid drop: nucleons attracted by short range force, but do not collapse due to shorter range repulsive force

Surface of drop is well defined

Drop held together by surface tension \propto Area

Binding energy $B = E_{drop} - E_{constituents}$

A drop will form if energetically favourable i.e. $E_{drop} < E_{constituents}$

Larger B means more tightly bound nucleus - more stable!

each nucleon contributes approx. same BE $\Rightarrow B \propto A$ (or B/A ~ const) each nucleon only feels neighbours not all nucleons otherwise get B $\propto A(A-1)$ nuclear density is ~ constant out to surface \Rightarrow surface nucleons contribute less B surface area ~ R² and R ~ A^{1/3} therefore surface area ~ A^{2/3}

$A \propto Volume$

Postulate three terms for binding energy:

volume term \propto volume - nucleons are attractive & "condense" into nuclei surface term \propto area - surface nucleons less tightly bound - fewer neighbours! coulomb term $\propto Z^2$ /radius - for uniform charge distribution within drop

What sign will each term have?

Dr Eram Rizvi Nuclear Physics and Astrophysics - Lecture 7 $B(Z,A) = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}}$ Qualitatively behaviour is as expected: • surface term: largest effect for small nuclei $a_V a_S$ and a_C are constants determined from volume term is constant by construction the BE/A vs A curve on previous page • Coulomb term: largest effect for high Z nuclei This formula is incomplete: predicts greatest binding energy for Z=0 (for fixed A) Volume 15 B/A (MeV per nucleon) Surface Coulomb 0 symmetry 5 Sum of volume, surface and Coulomb terms show positive slope 50 100 150 250 200 Mass number A

We forgot to include QM nature of nucleons symmetry!

neutrons & protons are fermions \Rightarrow Paul Exclusion Principle

forbids identical fermions from same QM state

will influence nucleons in potential wells

 ΔE is similar for neutron & proton \Rightarrow for fixed A, energy is minimised by having Z=N

Stable nuclei prefer to have Z = A/2 (i.e. Z=N) Strongly obeyed for low Z nuclei, weakly observed for high Z Postulate Binding Energy term ~ -(A-2Z)²/A Reduces BE when $Z \neq N$ quadratically Suppressed as A increases

Dr Eram Rizvi

Nuclear Physics and Astrophysics - Lecture 7

Experiments show that 2p or 2n are always more strongly bound than 1p+1n

Approx. 3000 have been studied - only ~240 are stable

- 170 stable with even N and even Z
- 60 stable with even N and odd Z
- 4 stable with odd N and odd Z

We add a pairing term the equation

- For odd A nuclei (δ=0)
 - Z even, N odd
 - Z odd, N even
- For A even
 - ► Z odd, N odd $(-\delta)$
 - Z even, N even (+δ)

Spin effects produce the pairing term Nucleon <u>pairs</u> with net spin = 0 are more bound Such nucleons have very closely overlapping wave functions They tend to be closer together - thus more bound

Pairing Term

Contribution to binding energy is

$$\delta(Z,A) = \frac{a_P}{A^{1/2}}$$

Semi Empirical Mass Formula

$$B(Z,A) = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(A-2Z)^2}{A} + \delta(A,Z)$$

The constants are obtained by fitting data (A>20) Light nuclei not used - additional structure due to shell closure (see later)

Given the binding energy we can calculate nuclear masses:

nuclear mass
$$M_N(A,Z) = Zm_p + (A-Z)m_n - B/c^2$$
 $m_p^{=}$ proton m
 $m_n^{=}$ neutron m

ass mass

Nuclear masses are difficult to measure (need to remove all electrons!) Much easier to compare to measurements of atomic masses Take into account mass of electrons:

$$M(A,Z) \simeq Zm(^{1}H) + (A-Z)m_{n} - B/c^{2}$$
 $m(^{1}H) = H$

nydrogen <u>atom</u> mass

This is an approximation: neglecting binding energy of electrons! Approximation is small: $m_e=0.5 \text{ MeV/c}^2$ and electron binding energies ~ keV Nuclear masses are ~ GeV/c²

Dr Eram Rizvi

atomic mass

Nuclear Physics and Astrophysics - Lecture 7

oo = odd-odd nuclei = N is odd and Z is odd ee = even-even nuclei = N is even and Z is even П

note A dependence of δ pairing term is sometimes written differently

sometimes 12.0 A^{-1/2} sometimes 34.0 A^{-3/4}

depends on how fit to data is performed...

use values given on problem / exam sheets

no need to memorise them!

Dr Eram Rizvi

Nuclear Physics and Astrophysics - Lecture 7

Slow tail to rhs is due to long range of Coulomb repulsion - protons in large A nuclei feel Coulomb replusion from all other p^+ but nuclear attraction from few neighbours

Success of formula hints suggests assumptions were meaningful

In particular that there is a short range attraction

If attractive force were long range then there would be a term prop. to A(A-I)

nuclear strong force saturates i.e. limited to short range

- The Semi Empirical Mass Formula only qualitative treatment of spin
- Assumption of spherical nucleus implies zero nuclear electric quadrupole moment
- Drop model implies rotational/vibrational states no predictions here
- \bullet Is useful for examination of β decay
- and nuclear fission

$$B(Z,A) = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(A-2Z)^2}{A} + \delta(A,Z)$$

Dr Eram Rizvi

Nuclear Physics and Astrophysics - Lecture 7

Consider M for fixed A:

$$M(Z,A) \simeq Zm(^{1}H) + Nm_{n} - \left(a_{V}A - a_{S}A^{2/3} - a_{C}\frac{Z(Z-1)}{A^{1/3}} - a_{A}\frac{(A-2Z)^{2}}{A} + \delta(A,Z)\right)$$

quadratic in Z \Rightarrow parabola with min Z Can solve for Z_{min} Lowest mass = largest B = most stable nucleus

Odd A: one parabola with a minimum Z_{min} can be reached via β -decay (A is constant) For Z > Z_{min} proton \rightarrow neutron For Z < Z_{min} neutron \rightarrow proton

Even A:

Two parabolas arise from δ term separated by 2δ

 $\delta = \pm 12.0/A^{1/2}$ (even: oo / ee nuclei)

 $\boldsymbol{\beta}$ transitions switch between alternate parabolas

Two stable isobars may exist

Java applet for SEMF calculation of stability

http://www.physics.sjsu.edu/tomley/Semf.html

Dr Eram Rizvi

Nuclear Physics and Astrophysics - Lecture 7