1)

a)
$$\frac{7}{3}L$$
; $N = \frac{1}{4}$ $\frac{1P_{3/2}}{P_{3/2}}$
 $\overline{J}^{2} = \frac{3}{2}$ \overline{O} $\overline{J}^{2} = \frac{3}{2}$
 $\overline{J}^{2} = \frac{3}{2}$ \overline{O} $\overline{J}^{2} = \frac{3}{2}$
b) $\frac{4}{5}B$ $\frac{n=6}{P=5}$ n shell $closed$
 $\frac{1P_{3/2}}{P_{2}}$ $\overline{J}^{2} = \frac{3}{2}$ $L = 1 \implies P = -\overline{O}$
 $\frac{1P_{3/2}}{P_{2}}$ $\frac{1}{P_{2}} = \frac{3}{2}$

c)
$${}^{15}C$$
 $P=6$
 $a=9$ P shell $cbxed$
 ${}^{1}ds_{/2} \longrightarrow J= \frac{5}{2}$ $L=2$ O
 ${}^{15}C P= \frac{5}{2}^{+}$

$${}^{q}B_{e} + p \rightarrow {}^{8}B_{e} + {}^{2}H \qquad Q = 0.5595 \quad M_{e}V$$

$$M({}^{9}B_{e}) = 9.01218 \cup$$

$$M_{p} = 938.28 \quad M_{e}V$$

$$M({}^{2}H) = 2.014 \cup$$

$$Q = M({}^{9}B_{e}) + M_{p} - M({}^{8}B_{e}) - M({}^{2}H)$$

$$Q = M({}^{9}B_{e}) + M_{p} - M({}^{8}B_{e}) - M({}^{2}H)$$

$$Q = M({}^{9}B_{e}) + M_{p} - M({}^{8}B_{e}) - M({}^{2}H)$$

$$Q = M({}^{9}B_{e}) + M_{p} - M({}^{8}B_{e}) - M({}^{2}H)$$

$$Q = M({}^{8}B_{e}) + M_{p} - M({}^{8}B_{e}) - M({}^{2}H)$$

$$Q = M({}^{8}B_{e}) + M_{p} - M({}^{8}B_{e}) - M({}^{2}H)$$

$$Q = M({}^{8}B_{e}) + M_{p} - M({}^{8}B_{e}) - M({}^{2}H)$$

$$Q = M({}^{8}B_{e}) + M_{p} - M({}^{8}B_{e}) - M({}^{2}H)$$

$$Q = M({}^{8}B_{e}) + M_{p} - M({}^{8}B_{e}) - M({}^{2}H)$$

$$Q = M({}^{8}B_{e}) + M_{p} - M({}^{8}B_{e}) - M({}^{2}H)$$

$$Q = M({}^{8}B_{e}) + M_{p} - M({}^{8}B_{e}) - M({}^{8}B_{e})$$

$$Q = M({}^{8}B_{e}) + M_{p} - M({}^{8}B_{e}) - M({}^{8}B_{e})$$

$$Q = M({}^{8}B_{e}) + M_{p} - M({}^{8}B_{e}) - M({}^{8}B_{e})$$

$$Q = M({}^{8}B_{e}) + M_{p} - M({}^{8}B_{e}) - M({}^{8}B_{e})$$

$$Q = M({}^{8}B_{e}) + M_{p} - M({}^{8}B_{e}) - M({}^{8}B_{e})$$

$$M({}^{8}B_{e}) = M({}^{8}B_{e}) - M({}^{8}B_{e})$$

$$Q = M({}^{8}B_{e}) + M_{p} - M({}^{8}B_{e})$$

$$M({}^{8}B_{e}) = M({}^{8}B_{e}) + M_{p} - M({}^{8}B_{e})$$

$$M({}^{8}B_{e}) = M({}^{8}B_{e}) + M_{p} - M({}^{8}B_{e})$$

$$M({}^{8}B_{e}) + M_{p} - M({}^{8}B_{e})$$

2)

3)
2)
$$\frac{212}{93}Cf \rightarrow \frac{239}{96}Cm + K$$

Use s.E.M.F. to calculate all 3 masses:
 $M(\frac{4}{2}\chi) = ZM_{p} + (A-2)M_{A} - 1556A + 17-23 \frac{2}{A}M_{3} + 0.697 \frac{2^{2}}{A}M_{3} + 22}$
where $M(\frac{4}{2}\chi)$ is a nuclear mass
because I used mp Z m in formula
 $M(\frac{1}{4}\chi)$ is a nuclear formula
 $M(\frac{1}{4}\chi)$ is a nuclear mass
 $Kasiest$ to program formula
 $M(\frac{1}{4}\chi)$ is a nuclear formula
 $M(\frac{1}{4}\chi)$ is a nuclear mass
 $M(\frac{1}$

$$B(15) = 111.96 \text{ MeV} \quad n = 7 \qquad |P_{1/2}|$$

$$B(16) = 127.62 \text{ MeV} \quad n = 8 \qquad |P_{1/2}|$$

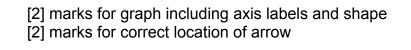
$$B(170) = 131.76 \text{ MeV} \quad n = 9 \qquad |d_{5/2}|$$

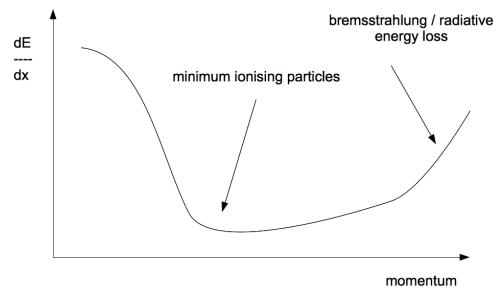
$$P_{1/2} = 127.62 - 111.96$$

$$= 15.66 \text{ MeV}$$

$$Id_{5/2} = 131.76 - 127.62$$

$$= 4.16 \text{ MeV}$$


$$id_{5/2} = 131.76 - 127.62$$


$$= 4.16 \text{ MeV}$$

$$id_{5/2} = 15.66 - 4.14$$

$$= 11.52 \text{ MeV}$$

5)

