
We have been able to relate quite a few macroscopic properties of gasses such as 

P, V, T to molecular behaviour on microscale. We saw how macroscopic pressure 

is related to the molecular motion in case of perfect gasses. Is there anything else 

interesting one can learn from the kinetic theory of perfect gasses? Indeed there is. 

So far we only considered macroscopic properties that can be termed as static. We 

shell now look at some properties that are not. Collectively they are termed 

transport phenomena and can be further subdivided in: 

 

 

•Diffusion – molecular transport due to concentration gradients 

•Thermal conduction – transport of energy 

•Viscosity – transport of momentum 

 

These are described by their corresponding coefficients: D for diffusion, K for 

thermal conduction and η for viscosity.  

Perfect Gases – Transport Phenomena 
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Mean free path 

In order to consider the diffusion we must first look in details at molecular 

collision. We again suppose that all molecules are the same and collide 

elastically and also suppose σ to be an effective molecular diameter. We will 

follow the progress of a single molecule as it collides with others moving 

through the gas. For simplicity we assume that the rest of the molecules are 

frozen in their positions. Thus if our lonely molecule travels distance l it will 

sweep an element of volume πσ2l and if there are n molecules per m3 then our 

molecule will collide with πσ2l n of them. 
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We can now define the mean distance between collisions or mean free 

path as (distance travelled)/(number of collisions): 
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We only considered the simplest approach, in reality other molecules will 

move too and if the speed distribution will be describe by that of Maxwell 

Mean free path cntd. 
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what a change! 

We see that λ~1/n~1/P. For air (σ=0.3nm) at STP (standard temperature and 

pressure) λ≈100nm, whilst mean distance between the molecules is of order 

(1/n3) ≈3nm.  
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Consider a volume of gas with concentration n and mean velocity v and lets see 

how many molecules will pass through an area A per unit time. We further split 

our velocity in three components one of which is perpendicular to area A (we 

done this before in kinetic theory). Then in time t about 1/6 of  the molecules in 

the volume vtA will pass through A and hence flux j: 

Number of collisions per unit area per second (flux) 
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Diffusion 

Now if we consider gas with a concentration gradient it should be clear that 

molecules will move from the more concentrated to the less concentrated 

regions via a process of collision/random walk. This is diffusion process. If 

over distance dx concentration change is dn the concentration gradient is 

dn/dx. The number of molecules crossing A normal to gradient per second can 

then be written as: 
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Where D is called the coefficient of self-diffusion and the negative sign implies 

flow in the direction of smaller concentration.  

Consider the following situation: 
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Diffusion contd. 

 
We would then have the number of molecules per second crossing from 1 
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and from 3 
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There will also be molecules leaving on each side of 2 of number 

So the net transfer is then   

For air at STP σ=0.3nm, λ≈100nm, v=450m/s, n ≈3*1025m-3 

which gives D of order 10-2 m2/s 

hence D can be related with macroscopic T and also P and 

V through n 



Diffusion contd. 

 

The difference from the previous consideration (jin = jout, dn/dt=0) is that now 

n=n(x,t), and dn/dt≠0 so we arrive to another relationship: 
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With the solution 

(for L>>D): 

N0 is the initial number of molecules, A is the area across which gas expands.  
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Thermal conductivity 
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conductivity 

Now the rate of transport, this time of 

thermal energy (                 ), is from 1 
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so the net transfer at 2 is  
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Viscosity 
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F must be applied to maintain constant flow. F is 

proportional to A and u/h. A 
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We further assume: (i) u<<v, (ii) the only molecules 

reaching 2 are those that just made their collision at 

a distance λ. Thus the number of molecules crossing 

A is               per second  and from 3 this molecules 

bring to 2 net horizontal momentum 
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But 2 sends           both ways too 

Thus the total momentum transfer 

per second (i.e. force) is 



Electrical conductivity 
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V- voltage difference 

Electric field E=V/l = const 

A charge e subject to constant E experiences a constant force F=e(V/l)=ma and 

the drift velocity is then 
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and grows linearly with time. Now lets consider that a collision takes v to 0 
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The current density is then 

Electrical conductivity cntd. 


