Theory & Simulation at the CCMMP

Alston J. Misquitta, Anthony E. Phillips, Kostya Trachenko & Martin Dove

CCMMP

- Organic semiconductors
- Functional materials
- Carbon, nanomaterials, biomaterials
- Disordered materials
- Method development

CCMMP

- Organic semiconductors
- Functional materials
- Carbon, nanomaterials, biomaterials
- Disordered materials
- Method development

Large-scale simulations

Effect of radiation-induced amorphization on diffusion

What are long-term (millions of years) effects of irradiation on the performance of waste forms?

Case study: zircon ZrSiO₄ found minerals are -1 billion years old, completely amorphous yet intact Absorbs large ions like Pu on Zr site

Molecular dynamics simulation of radiation damage

1. Empirical potentials and short-range ZBL potential at short <-1 Å distances

2. Almost perfectly scalable MD code based on domain decomposition strategy (DL_POLY 3 MD package)

3. Parallel computers(Cambridge HPC, HPCx, HECToR)

4. Adapted MD code to handle out-of-equilibrium conditions (variable time step, boundary scaling) and to analyze radiation damage on the fly

70 keVU recoil and their overlap

Channels of low density appearing along the track

Frameworks Local structure

Organo-Metallic frameworks: Guest rearrangement

$CuZn(CN)_4 \cdot N(CH_3)_4 \cdot CCI_4$

Enthalpic as well as entropic contribution to guest desorption

Zinc cyanide framework structure

Negative thermal expansion in zinc cyanide, Zn(CN)₂

Important vibrations for negative thermal expansion

Accurate models : multipoles

Nucleation

400,000 deaths in India alone

Smog at the Taj

Smoke from forest fires in California

Black carbon particulates warm the upper atmosphere. (Myhre, Science 2009)

H. Wang, Proceedings of the Combustion Institute 33 (2011) 41-67

• Gas phase nucleation

• 1500K

- Soot inception thought to occur by pyrene dimerization
- PAHs thought to aggregate through van der Waals forces
- Structure of soot nuclei needed for combustion models
- Large uncertainty in models

PAHAP: Totton et al. (2010,2011)

Are coronene clusters stable at 1500K?

MD simulation of a 50-coronene cluster

Sublimation at 798.2K

Totton, Misquitta & Kraft, PCCP 2012

PAHAP: Totton et al. (2010,2011)

MD simulation of a 50-coronene cluster

Sublimation at 798.2K

Are coronene clusters stable at 1500K?

Totton, Misquitta & Kraft, PCCP 2012

Circumcoronene (C₅₄H₁₈)

Totton, Misquitta & Kraft, hot article in PCCP (2012)

LJ versus (iso)PAHAP

The apparently small differences lead to an order of magnitude increase in clustering.

 Supported by experimental evidence from Sabbah et al. (2010) and Happold et al. (2007)

• BUT soot *does* form easily!

- Other kinds of mechanisms?
- Are the interactions ionic? Chemical?
- Side-chains could buffer collisions.
- Heterogenous nucleation? How?

Collaborations

- Within the CCMMP
- QMUL
- TYC
- ...and beyond!

Collaborations

- Within the CCMMP
- QMUL
- TYC
- ...and beyond!

